THE PENNSYLVANIA STATE UNIVERSITY

CROCKER WEST BUILDING

STATE COLLEGE, PA

Senior Thesis Project Tech I: Structural Concepts and Existing Conditions Report

Eric M. Foster Architectural Engineering Structural Option

Advisor: Dr. Linda M. Hanagan

-- TABLE OF CONTENTS --

TABLE OF CONTENTS	2
EXECUTIVE SUMMARY	3
STRUCTURAL SYSTEM	4
FOUNDATION(S)	4
COLUMNS	5
FLOOR SYSTEM	6
ROOF SYSTEM	6
LATERAL SYSTEM	7
STRENGTH OF MATERIALS	8
MODEL CODES	9
DESIGN LOADS	9
LATERAL LOADING	10
WIND LOADS	10
SEISMIC LOADS	13
CONCLUSIONS	14
APPENDIX A	15
(Project Drawings)	15
APPENDIX B	
(ANALYSES ~ SPOT CHECKS ~ DESIGNS)	28

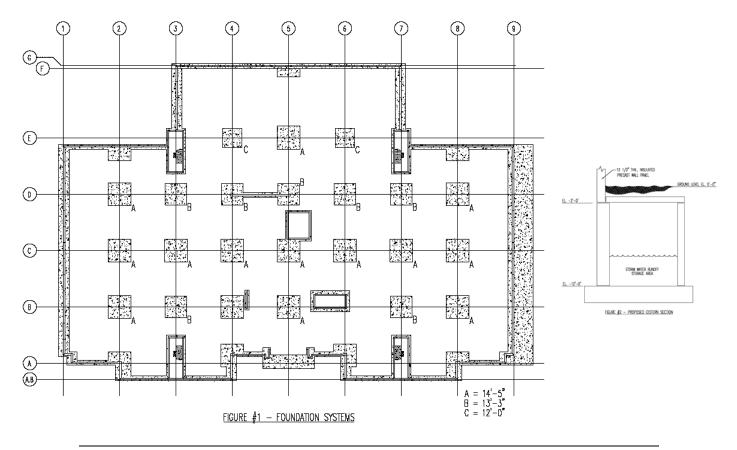
-- EXECUTIVE SUMMARY --

Structural Tech Report I is slated to assess the current structural system of Crocker West in an existing conditions report. Tech I will help us determine and better understand the design methods and selection criterion for the structural plan.

The Crocker West Building will be used as a highly classified research facility, specializing in the development and testing of underwater weapons for the U.S. Department of Defense. Located in State College, Pa, the structure will be a 3-story low-rise building with areas classified as office, light industrial, and warehouse totaling nearly 120,000 square feet. The first floor of the CWB will consist mainly of 'closed' lab area, along with

technician offices, locker rooms and special test areas. The second floor will include office space, another lab area, computer lab, student room and a room designated to SCIF (Sensitive Compartmented Information Facility), while the third floor will be devoted mostly to office space. The entire building will be constructed of precast systems, including: columns, beams, walls, floor & roof diaphragms. Lateral loads applied to the structure will be collectively distributed throughout the building to specially designed shear walls.

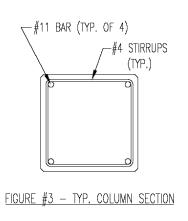
Two lateral analyses, wind and seismic, are included at the end of this report in Appendix B. The wind analysis was performed using the Analytical Method 2 of ASCE 7. Having found a design wind pressure of 16.4 psf at roof level (El. 40'-0 A.F.F.) and comparing it to the 19.6 psf found by the design engineer with the Simplified Method 1 of ASCE 7. I can conclude that the results I found using method 2 are reasonable. The variation of values can ultimately be due to the method used in analyzing and the level of detail required for each method. Similarly, some error can also be seen in the calculated story forces for the structure. Seismic load calculations were completed under the provisions of ASCE 7-05 (Chapters 11 & 12) and IBC 2006 (Section 1613). Using the necessary seismic considerations, I determined the Equivalent Lateral Force Procedure defined in section 12.8 of ASCE 7 was permitted for analysis and thus used. In comparing the results of my calculations versus the designer's spreadsheet, I found our values for V (base shear) to be quite different. I calculated a base shear of 1672 kips, which is nearly double that of the engineer's 883 kips. Having a Cs value of 0.089 versus a Cs value of 0.0607 will not make much difference and thus, I assume the discrepancy lies within the calculated building weight.


It is also important to note that spot checks of various structural components are also included in Appendix B of this report in order to justify other element sizing of the Crocker West Building structure, while Appendix A contains drawings of the project for reference.

-- STRUCTURAL SYSTEM --

As stated above, CWB is a total precast building. The following are detailed explanations of the individual precast members and systems.

FOUNDATION(S):


The foundation system(s) being implemented consists of typical cast-in-place (CIP) strip and pad footings, as well as a standard CIP slab-on-grade. Fifteen inch deep strip footings ranging from 3'-3" to 6'-6" wide are used along the perimeter of the structure. These footings help distribute wall panel loads to the ground. Additionally, the East walls strip footing of the structure will also be used as a part of the underground water cistern that will be used to collect treatable storm water runoff for reuse. Spread (or Pad) footings will be used throughout the interior portion of the building and will be used to pick up loads from columns and stair-towers. Pads used under columns vary in size from 12' square to 14'-5 square, while pads under the four typical stair-towers are 12'-0 x 25'-6. All pad footings are 2 foot thick unless noted otherwise. A six inch thick slab-on-grade reinforced with W4.0 x W4.0 WWF will complete the foundation system(s) and will be used as the ground floor level of the building. See Figures #1 and #2 below for a plan view of the foundation systems and proposed cistern detail, respectively. Please note, the width of the cistern was unavailable at this time.

PAGE 4 OF 87

COLUMNS:

The vertical supporting members for the entire structure are reinforced, precast concrete columns. All columns are 24" x 24" square columns with four (4) #11 longitudinal reinforcing bars and #4 stirrups spaced accordingly (See Figure #3). Columns will be cast for lengths up to 42 feet. Each column will contain haunches and haunch reinforcing (Figure #4) cast monolithically at each floor level, and in the required position for beam bearing and load transfer. The columns are spaced on a 35'-0 x 35'-0 typical bay grid and are connected to the pad footings with four (4) 1 ¼" dia. ASTM A193 threaded rods. See Figure #5 for column grid layout.

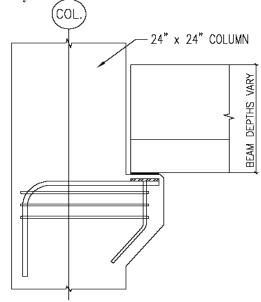
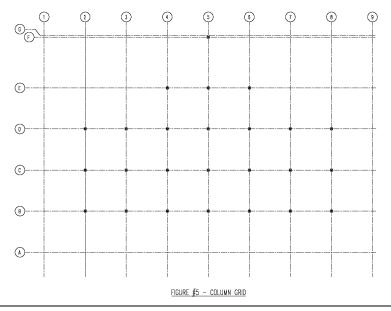
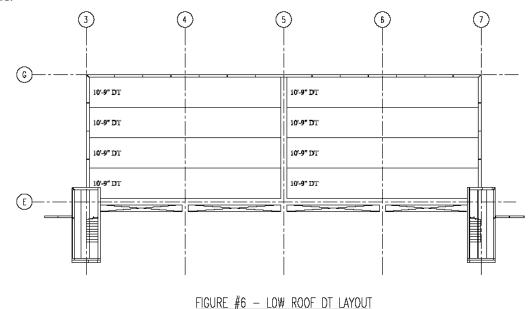



FIGURE #4 - COLUMN w/ HAUNCH

PAGE 5 OF 87


FLOOR SYSTEM:

As previously stated, the 1st Floor (or Ground Level) floor system is a 6" thick slab-on-grade with W4.0 x W4.0 WWF reinforcing. The remaining floor levels are constructed of precast, prestressed hollow-core flat slabs. The 2nd Floor Level will consist of 12 inch and the 3rd Floor Level will be comprised of 10 inch hollow-core flat slabs, each with six (6) 7-wire, ¹/₄" dia. 270 ksi low-relaxation prestressing strands and a typical 2" topping. Some of the hollow-core floor system clear spans are nearly 33'-0, with individual panels running in an East-West direction. See drawings in Appendix A for hollow-core panel layout.

Furthermore, these hollow-core slabs are supported by one of two methods. If the floor slab is to bear at an exterior wall panel location, a specially designed bearing ledge will be cast into the precast wall panel with proper reinforcing. For interior bay supports, the hollow-core slabs will be supported by precast, prestressed concrete inverted-tee (IT) beams. IT beams for the 2nd Floor were designed to be 28" deep, while 3rd Floor beams are 20" deep due to dissimilar live loads. See Appendix A for typical IT Beam sections.

ROOF SYSTEM:

The roofing system for the Crocker West Building main roof will be constructed by means of similar materials used in erecting floors two and three. The main roof will consist of 8" hollow-core flat slabs with (7) 7-wire, $\frac{1}{4}$ " dia. 270 ksi low-relaxation strands supported by 18" deep inverted-tee beams. The low roof, located in the rear storage area of the building, will be constructed of 10'-9 wide x 24" deep precast concrete double-tees (See Figure #6). In addition, each roof will receive a layer of 4" tapered rigid insulation and a 60 mil EPDM roofing membrane rather than a 2" topping which is not needed on the roof.

LATERAL SYSTEM:

One of the key design issues of a total precast structure is the make up of the lateral force resistance system. Crocker West is no different; its lateral system was designed using a compilation of precast shear walls positioned around the perimeter and throughout the building. These precast shear walls are constructed with several different thicknesses of insulated and non-insulated precast panels. Exterior wall panels (all insulated) acting as shear walls in the N-S direction are 12 ½" thick, while E-W direction walls are 9 ½" thick. Shear walls located on the interior of the structure and around stair-towers are 9" thick and non-insulated. Due to the fact that every panel is individually erected, specially designed connections are required for each piece. These connections, not specified in this tech report, are designed to ensure the applied load is safely distributed to the lateral system. Figure #7 below illustrates the layout of the shear walls; each represented by a solid line with a SW designation. Also, typical Wall Sections may be found in Appendix A.

-- STRENGTH OF MATERIALS --

CAST-IN-PLACE CONCRETE:	<u> </u>	
Slab-on-Grade	4000 psi	
PRECAST CONCRETE:	<u> </u>	<u> f`ci</u>
Columns Beams Hollow-Core Slabs Wall Panels	6000 psi 6000 psi 6000 psi 6000 psi	3500 psi for ALL
REINFORCING STEEL: Reinforcing Bars Stirrups WWF	6000	00 psi 00 psi 00 psi
PRESTRESSING STRANDS:	fps	$\mathbf{E}_{\mathbf{s}}$
1/2" Special (7-Wire) strands	270 ksi	28000 psi

-- MODEL CODES --

The following codes listed were used in the original design, as well as any and all analysis performed for this tech report.

BUILDING CODES:

International Building Code (IBC)	IBC 2006
CONCRETE CODES:	
American Concrete Institute (ACI) - Building Code Requirements for Structural Concrete	ACI 318-05
Precast/Prestressed Concrete Institute (PCI) - PCI Design Handbook, Precast and Prestressed Concrete	6 th Edition
LATERAL LOADS & DESIGN LOADS:	
American Society of Civil Engineers (ASCE) - Minimum Design Loads for Buildings and Other Structures	ASCE 7-05
IBC	IBC 2006

DESIGN LOADS:

LIV	E LOADS	
	DESIGN	<u>ASCE 7-05</u>
Lobby / 1 st Floor Corridors	*a	100 psf
Corridors above 1 st Floor	80-125 psf *b	$80 \mathrm{psf}$
Offices	80-125 psf *b	$50 \mathrm{psf}$
Ordinary Flat Roof	20 psf	20 psf
Stairs / Exits	$175 \mathrm{psf}$	100 psf
Snow (<i>pf</i> = 0.7*40psf = 28 psf)	$40 \mathrm{psf}$	40 psf *c

*Notes:

a. Lobby and 1^{st} Floor located at ground level which exceeds 100 psf. b. Design live loads differ from floor to floor. 2^{nd} Floor = 125 psf 3^{rd} Floor = 80 psf c. 40 psf Snow Load specified by Centre Region Code (See Appendix B)

DEAD LOADS

Dead load for structure includes self weight of individual precast members. See seismic analysis in Appendix B for detailed loads.

-- LATERAL LOADING --(Wind)

WIND LOADS:

The following wind analysis results were established using the provisions of ASCE 7-05, CH. 6. A complete detailed wind analysis has been included in Appendix B for reference and verification.

Basic Wind Speed	V = 90 mph
	\mathbf{K} d = 0.85
Topographic Factor	I = 1.0
	$\mathbf{K}\mathbf{h} = 1.04$

N-S WIND PRESSURES

<u>Height (ft.)</u>	<u>qz (psf)</u>	<u>qh (psf)</u>	<u>Pwindward (psf)</u>	Pleeward (psf)
0-15	15.0	18.3	13.5	-11.1
20	15.9	18.3	14.1	-11.1
25	16.6	18.3	14.6	-11.1
30	17.3	18.3	15.1	-11.1
40	18.3	18.3	15.7	-11.1
50	19.2	18.3	16.4	-11.1

E-W WIND PRESSURES

<u>Height (ft.)</u>	<u>qz (psf)</u>	<u>qh (psf)</u>	<u>Pwindward (psf)</u>	<u>Pleeward (psf)</u>
0-15	15.0	18.3	13.5	-3.13
20	15.9	18.3	14.1	-3.13
25	16.6	18.3	14.6	-3.13
30	17.3	18.3	15.1	-3.13
40	18.3	18.3	15.7	-3.13
50	19.2	18.3	16.4	-3.13

Wind Pressure Diagrams displayed on the following page.

-- WIND PRESSURE DIAGRAMS --

Due to the building symmetry, wind pressures are equal and opposite for reverse wind direction.

N-S WIND FORCES

1. Low Roof/ Warehouse Area	<u>Height (ft)</u> 28	<u>Story Force (kips)</u> 43.05	<u>Overturning Moment (ft-k)</u> 1205.4
2. Main Structure			
a. 1 st Floor	Gnd Lvl.	26.5	0
b. 2 nd Floor	16	54.4	870.4
c. 3 rd Floor	28	51.0	1428
d. Roof	40	66.1	2645.4

E-W WIND FORCES

1. Low Roof/ Warehouse Area	Height (ft) 28	<u>Story Force (kips)</u> 14.53	<u>Overturning Moment (ft-k)</u> 406.9
2. Main Structure			
a. 1 st Floor	Gnd Lvl.	18.4	0
b. 2 nd Floor	16	30.1	481.6
c. 3 rd Floor	28	28.2	790.3
d. Roof	40	29.7	1189.5

Floor Tributary Widths

- 1^{st} Floor = 7'-0 2^{nd} Floor = 14'-0 -
 - _
 - 3rd Floor = 12'-0 -
 - Roof = Varies (see wind calc.'s, Appendix B) -

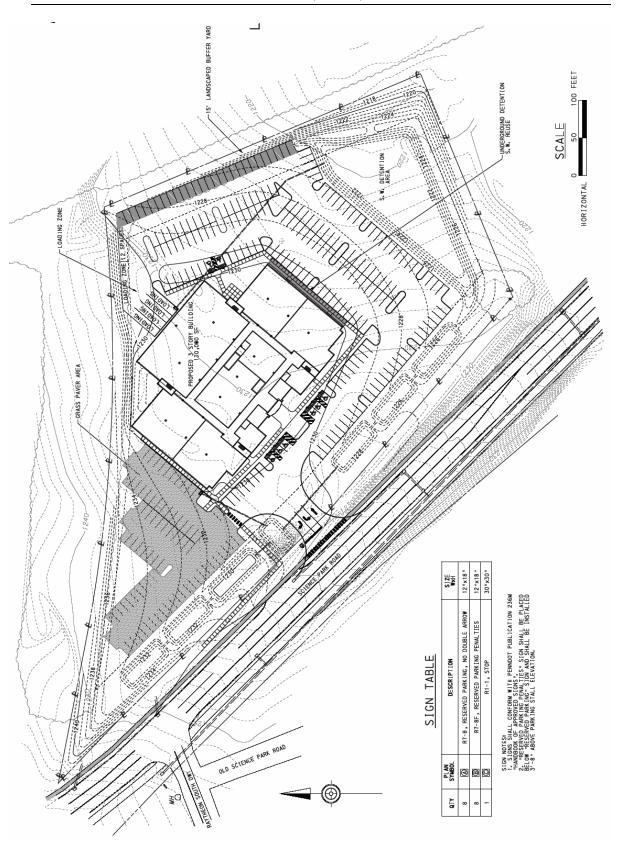
-- LATERAL LOADING --(Seismic)

SEISMIC LOADS:

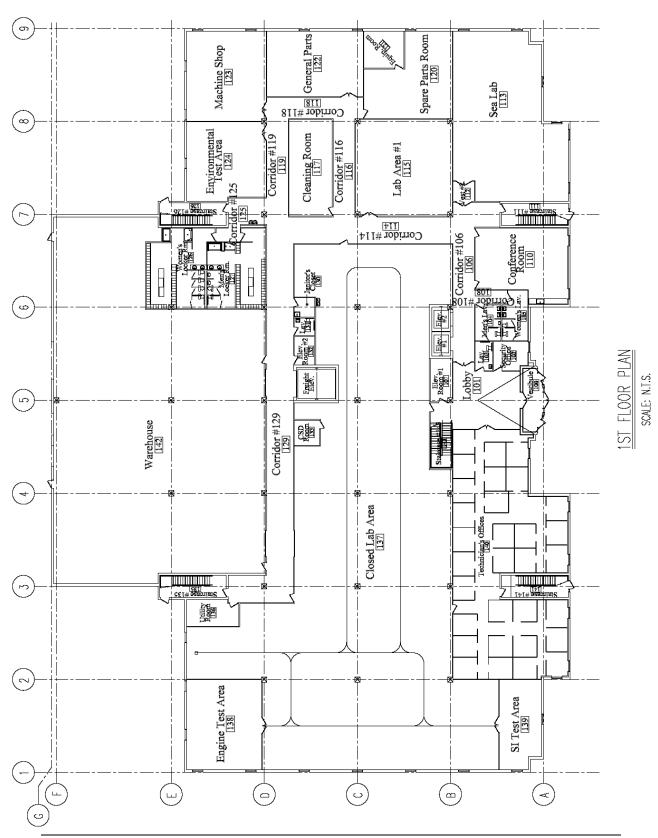
The following seismic analysis results were established using the provisions of ASCE 7-05, Chapters 11 & 12 and IBC 2006, Section 1613. A complete detailed seismic analysis has been included in Appendix B for reference and verification.

Seismic Considerations	Ss = 0.17 S1 = 0.06
Building Occupancy	Type II
Seismic Design Category	B
Seismic Response Coefficient	Cs = 0.089
Effective Seismic Weight 1. Roof	<u>Wt. (kips)</u> 4336.8
2. 3 rd Floor	4000.8 7244.4
$\begin{array}{c} \textbf{2. 3} \\ \textbf{3. 2}^{nd} \\ \textbf{Floor} \end{array}$	7244.4
5. % 11001	Total Effective Seismic Wt. = 18,776 kips
Seismic Base Shear	V = CsW (kips)
1. Roof	VR = 386
2. 3 rd Floor	V3 = 645
3. 2 nd Floor	V2 = 641
	Total Base Shear (VT) = 1,672 kips
Overturning Moment	(ft-k)
1. Roof	16,212
2. 3 rd Floor	18,060
3. 2 nd Floor	<u>10,256</u>
	Total O.T. Moment = 44,528 ft-kips

-- CONCLUSIONS --


In conclusion, this report presents various types of information to validate the existing structure of Crocker West. I spot checked several different load carrying members and found them to be of similar size to those used in the original design. Likewise, the wind and seismic lateral analyses I performed, seismic controlling, yielded values that are rational to the design engineer's values to prove them practical. The minor discrepancies encountered in the wind analysis I believe are simply due to the fact I used the analytical procedure and not the simplified method. Additionally, I feel the large difference in base shear found between my seismic analysis and the engineers output is caused by our differing seismic weight (W) values. I concluded this based on two situations. First, I found Cs to be 0.089 which is very comparable to Cs = 0.0607 of that determined by the engineer's output. And second, I assumed many of the wall panel lengths when calculating their weights for the effective seismic weight (W) used in determining base shear (V = CsW). This led to me recording a higher seismic weight, thus the higher base shear value. Furthermore, other errors between my calculations and the engineer's could be due to the computer-based design program used and the parameters of that program.

Also note, the spot checks performed are not complete design check. I did not include many checks that would be necessary for proper design of that particular component, nor the entire structure. Disregarding uplift in the wind analysis and ignoring overturning effects on foundation elements are a few examples. However, I would like to add that the concise beam designs included in Appendix B of this report are in fact actual designs for this structure, having completed them myself for the owner of this building.

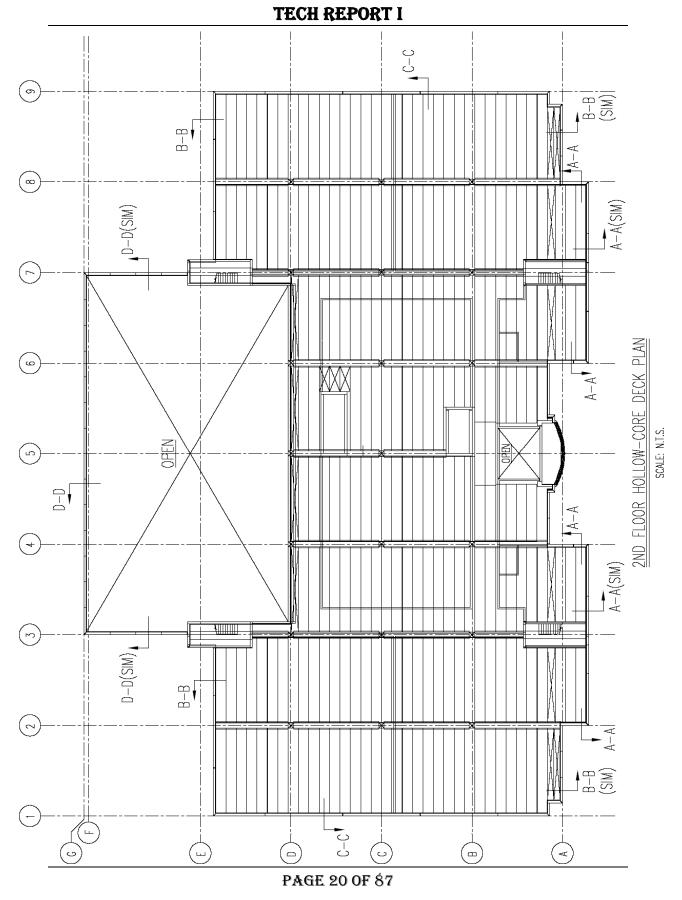

TECH REPORT I

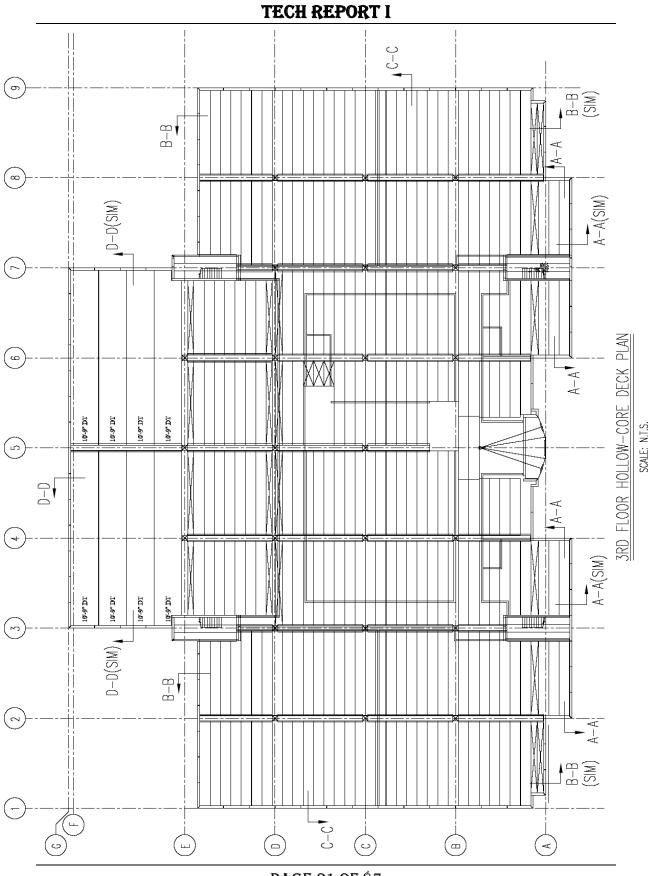
APPENDIX A

(Project Drawings)

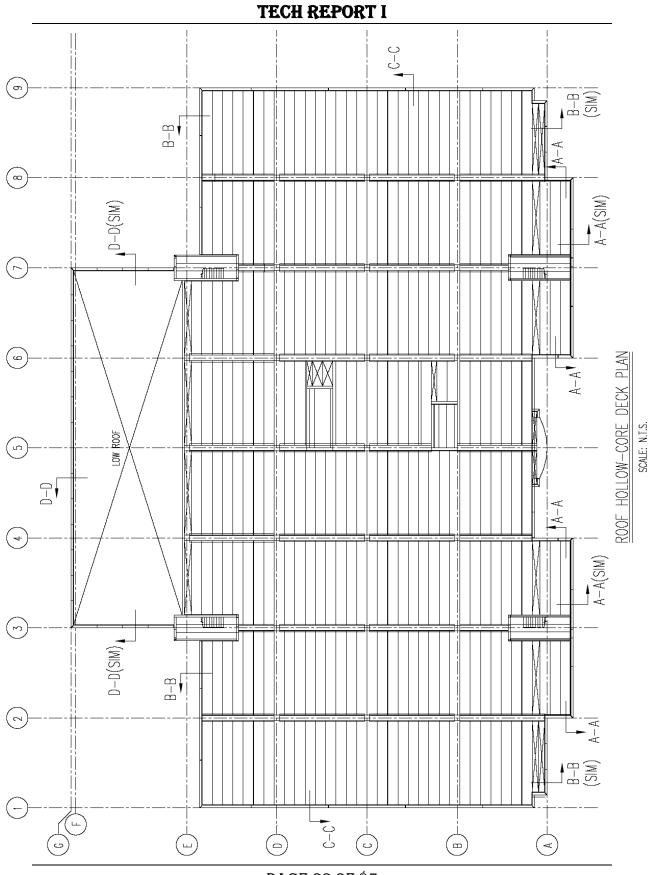
PAGE 16 OF 87

PAGE 17 OF 87

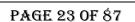

(တ Kunterense Rm #213 間 。 (∞) Kitsheed D 203 Offices #207 Conference Rm #214 214 R^W216 Corridor # idor #1 suz Suz are a set of the set o r~~ Lab Area #2 227 影響 Corridor #201 201 Mezzanine [251] Office #202 202 SCIF 219 -Work Room (م) 888 Ξ 0000 Elev. 330 330 #520 라 라 라 다 K 2ND FLOOR PLAN Corridor #228 - F an, Closet 224 #200 Storage Freight Elev. SCALE: N.T.S. 286 co (ഹ Corrido Corridor # 797 Office #249 15ce #248 248 Network Room 250 Ece #247 Computer Room #246 Students #245 245 4 Corridor #244 244 Colyridor #242 Etyzel Statutes ~ 229 Corridor #231 200 Offices #232 Work 35 Conference Rm #233 233 240 (\sim) 216 236 m ں ≪_ O

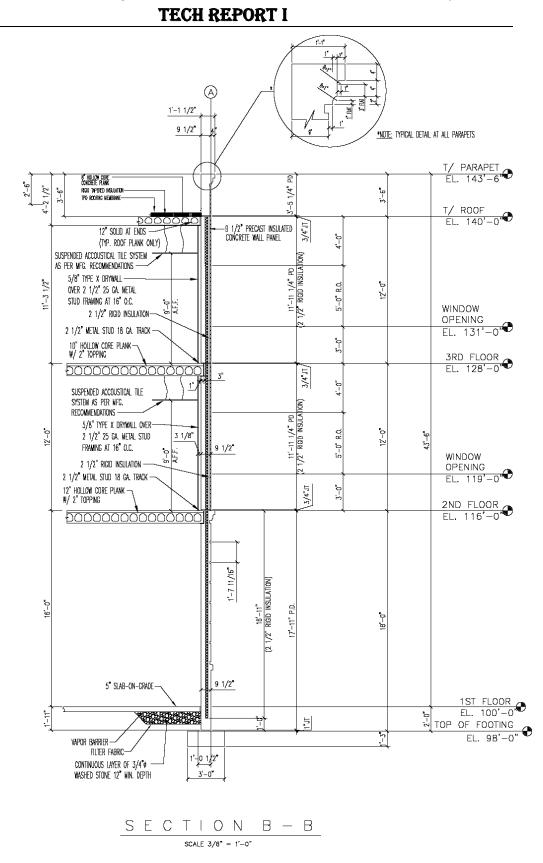


(တ Centry Control (∞) Future General Offices #317 Conference Rm #324 324 Ares 1326 33 Corridor #316 Corridor #3 Tallwry 114 OF D# 2510 UBIS SIE r~~ ΠIL 豒 onferend Rm #334 334 General fffices #32 Display Area mferen m #33 G O Print Room (ဖ) Elev. 0000 Elev. 8258 8258 Kitt **3RD FLOOR PLAN** 1 Eloset Storage Freight Elev. SCALE: N.T.S. 355 ഹ Corridor #363 Corridor #300 300 offices #387 Corridor #340 4 jeneral ices #344 [344] Break Room 339 #302 Conference Rm #345 [345] eption ≠ 302 · 语 の #357 払 ridor # 3 dor 341 Corridor #343 000 1500 1500 General Offices #346 с С Room 249 Conference Rm #348 348 0000 3334 354 (~) Conference Rm #350° ί. m ں ≪ O


TECH REPORT I

PAGE 19 OF 87

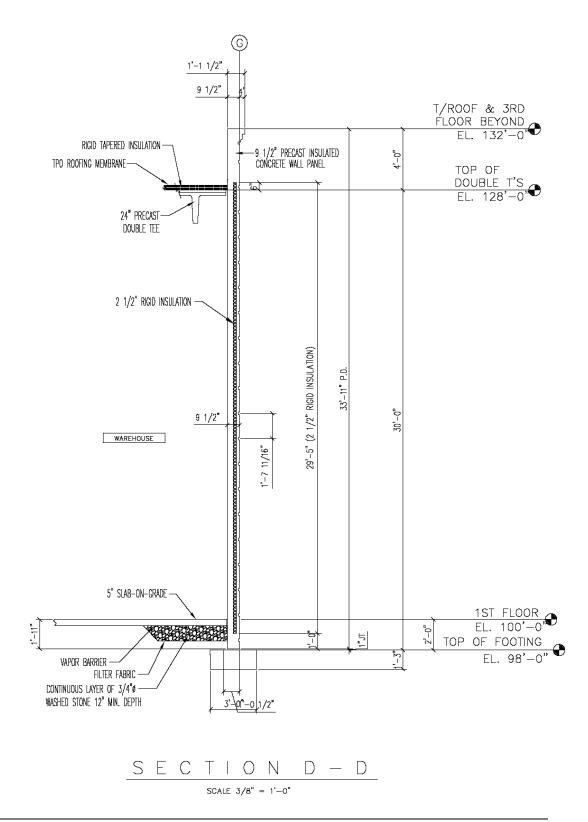

PAGE 21 OF 87


PAGE 22 OF 87

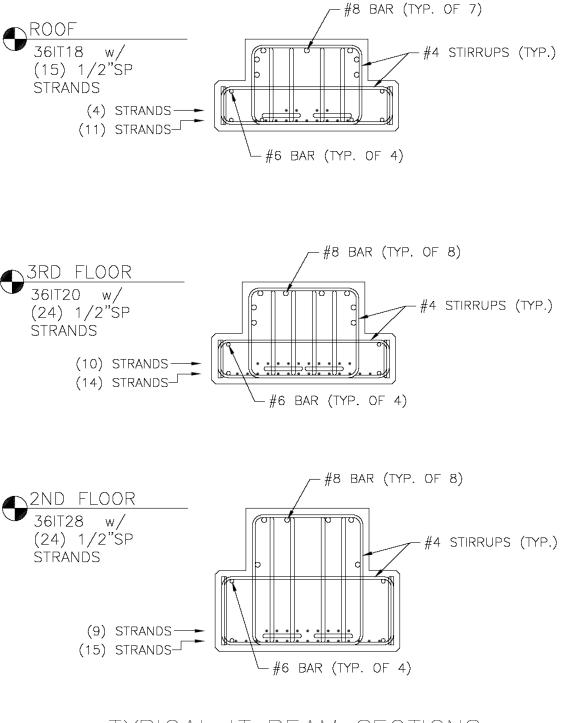
6 SLOPED STAY-PUT REGLET-100D-SERIES FLASHING 1'-0' TERMINATION BAR 68 MIL EPDM ROOFING 4" RIGID POLYISOCYANURATE INSULATION (TYP.) 1-5 1/4" PD *NOTE: TYPICAL AT ALL ROOF LOCATIONS T/ PARAPET EL. 145'−0" RIGID TAPERED INSULATION -3/4 JT 5-8 1/2 -5 1/4" PD 5'-0" 5'-0" TPO ROOFING MEMBRANE 3/4 JT 8" HOLLOW CORE CONCRETE PLANK T/ ROOF EL. 140'-0' - 5323 12" SOLID AT ENDS 1'-0" 4'-0" (TYP. ROOF PLANK ONLY) -12.5" PRECAST INSULATED CONCRETE WALL PANEL SUSPENDED ACCOUSTICAL TILE SYSTEM 🖵 (NOL AS PER MFG. RECOMMENDATIONS -1/2" RIGID INSULAT 5/8° TYPE X DRYWALL-5'-0" R.O. 12'-0" OVER 2 1/2" 25 GA. METAL 12"-4" STUD FRAMING AT 16" O.C. 9'-0" A.F.F. WINDOW 2 1/2" RIGID INSULATION-OPENING EL. 131'-0" 2 1/2" WETAL STUD 18 GA. TRACK 3-0" 10" HOLLOW CORE PLANK W/ 2" TOPPING 3/4"JT 3RD FLOOR EL. 128'-0'€ 3" 4'-0" SUSPENDED ACCOUSTICAL TILE SYSTEN AS PER NFG. 11'-11 1/4" PD RECOMMENDATIONS 5/8" TYPE X DRYWALL OVER 45'-0" R.O. 12'-0" 2 1/2" 25 GA. METAL STUD 3 1/8 FRAMING AT 16" O.C. 1'-0 1/2" 5'-0" 11'-4" 9 -0 A F.F WINDOW OPENING 2 1/2" RIGID INSULATION EL. 119'-0' 2 1/2" METAL STUD 18 GA. TRACK 12" HOLLOW CORE PLANK W/ 2" TOPPING 3-0 3/4"JT 2ND FLOOR EL. 116'-0" E 5 3" 1'-7 11/16" 16"-11" RIGID INSULATION) 17"-11" P.D. 18'-0" 16'-2 1/2" (2 1/2" 5" SLAB-ON-GRADE -1'-0 1/2" 1ST FLOOR EL. 100'−0" TOP OF FOOTING ç 1°.1 EL, 98'-0" WPOR BARRIER-5 FILTER FABRIC -0 1/2 CONTINUOUS LAYER OF 3/4"# WASHED STONE 12" MIN. DEPTH 6'-6"

TECH REPORT I

 $\frac{\text{S E C T | O N A - A}}{\text{scale 3/8" = 1'-0"}}$


PAGE 24 OF 87

(A)1'-4" 1'-0" T/ PARAPET EL. 143'−6" RIGID TAPERED INSULATION -2-6 TPO ROOFING MEMBRANE 1/2" 3'-6" 3'-6" B" HOLLOW CORE CONCRETE PLANK T/ ROOF EL. 140'-0" 13275 3/4"JT/ Д 12" SOLID AT ENDS 1'-0" 4'-0" (TYP. ROOF PLANK ONLY) -12 1/2" PRECAST INSULATED CONCRETE WALL PANEL B: */1 II-III II-III II-SUSPENDED ACCOUSTICAL TILE SYSTEM 🖵 AS PER MFG. RECOMMENDATIONS -5/8° TYPE X DRYWALL — 5'-0" R.O. 12'-0" OVER 2 1/2" 25 GA. METAL 12'-4" STUD FRAMING AT 16" O.C. 9-0" A.F.F. WINDOW 1/2 2 1/2" RIGID INSULATION-OPENING EL. 131'-0" 2 1/2" WETAL STUD 18 GA. TRACK 3'-0" 10" HOLLOW CORE PLANK-W/ 2" TOPPING 3/4"JT 3RD FLOOR EL, 128'-0" 4'-0" SUSPENDED ACCOUSTICAL TILE 11'-11 1/4" PD /2" RIGID INSULATION) SYSTEM AS PER NFG. RECOMMENDATIONS · 5/8" TYPE X DRYWALL OVER 5'-0" R.O. 12'-0" 43"-6" 2 1/2" 25 GA. METAL STUD 3 1/8" FRAMING AT 16" O.C. 1'-0 1/2" 11'-4" 9'-0" A.F.F. /2" WINDOW 2 1/2" RIGID INSULATION OPENING EL. 119'-0" 2 1/2" METAL STUD 1B GA. TRACK 12" HOLLOW CORE PLANK -W/ 2" TOPPING 3'-0" 3/4"JT 2ND FLOOR EL. 116'-0" 3" ±7 1-7 11/16 16"-11" RIGID INSULATION) 17"-11" P.D. 18'-0" 16'-2 1/2" 1/2" 2 1'-0 1/2" 5" SLAB-ON-CRADE 1ST FLOOR EL. 100'-0" TOP OF FOOTING 1.1 EL. 98'-0" VAPOR BARRIER ----FILTER FABRIC-1'-0 1/2' CONTINUOUS LAYER OF 3/4"# WASHED STONE 12" MIN. DEPTH 6'-6" SECTION C-C


TECH REPORT I

PAGE 25 OF 87

SCALE 3/8" = 1'-0"

PAGE 26 OF 87

TYPICAL IT BEAM SECTIONS

TECH REPORT I

APPENDIX B

(Analyses ~ Spot Checks ~ Designs)

TECH REPORT I

WIND ANALYSIS (Method 2: Analytical Procedure)

PAGE 29 OF 87

Centre Region Code

http://www.centreregioncode.org/commercial/design_criteria.php

Home

New Construction

Existing Structures

- <u>Rental Housing</u>
- Fire Safety
- Fire Protection
 Systems
- <u>FAQs</u>

Administration

Inspections

FAQs

Contact

<u>«back</u>

BASE DESIGN CRITERIA FOR CENTRE REGION CODE COMMERCIAL CONTSTRUCTION

Ground Snow Load (Pg) = 40 PSF

Basic Wind Speed = 90 MPH

Seismic considerations:

- .2 spectral response acceleration for site class B = .17
- 1.0 sec spectral response acceleration for site class B = .06

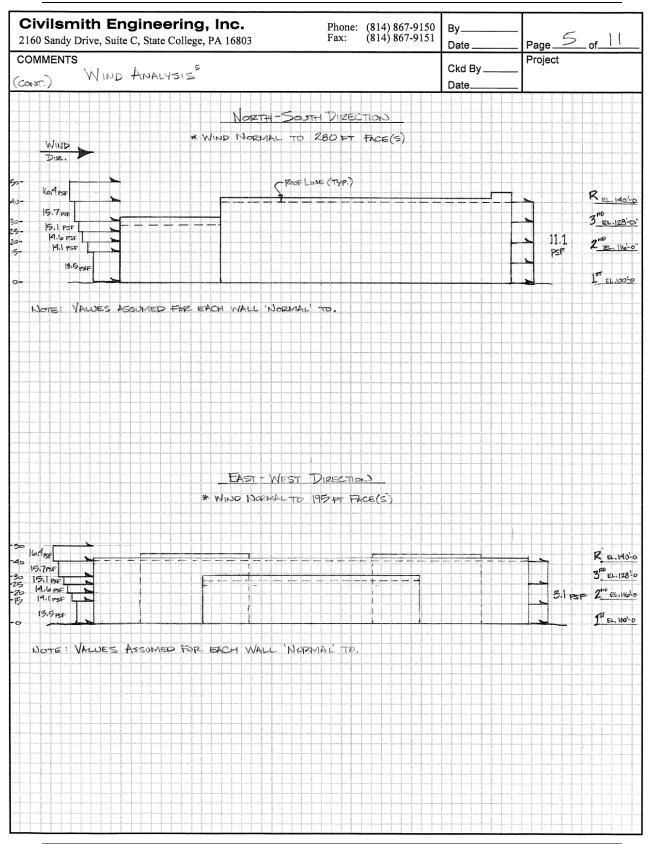
• <u>Home</u>

- New Construction
- Existing Structures
- Administration
- Inspections
- <u>FAQs</u>
- <u>Contact</u>
- <u>top</u>

Site Designed and Maintained by Lazerpro Digital Media Group, © 2005 - 2008 Website Design, Website Programming & Ecommerce Solutions

Civilsmith Engineering, Inc. Phone: (814) 867-9150 2160 Sandy Drive, Suite C, State College, PA 16803 Fax: (814) 867-9151	By Date	
WIND ANALYSIS	Ckd By Date	Project
[REF. ASCE 7-05 ~ CH. 6]		
CHECK TO SEE WHICH METHOD(S) ARE PERMITTED FOR ANAL	-7213	
A Метнор 1 Снеск - [6.4.1.1]		
1. BLOG. IS A SIMPLE DIAPHRAGM BLOG.		
2. MEAN ROOF HEIGHT $(h) \leq 60$ Fr. /25		
3. BLDG. IS ENCLOSED AND CONFORMS TO SECTION 6.5.9.?	2 / 4	
1. BLDG. IS REQULAR SHAPED VEE		
5. BLDG. IS NOT FLEXIBLE VER		
6. BLDG. COMPLIES /OF		
7. BLOG IS SYMMETRICAL W/ FLAT ROOF VOX		
8. BLOG, COMPLIES VOE		
CONCLUSION: PER SECTION 6.9.1.1, METHOD 1 - SIN MAY BE USED TO ANALYZE STRUCTURE METHOD 2 CHECK + [6.5.1]		20CEDUIZE
1. BLOG. IS REGULAR SHAPED VER 2. BLOG. COMPLIES VOR		
CONCLUSION " PER SECTION 6.5.1, METHOD 2 - ANAL PERMITTED AND WILL BE USED FOR	YTICAL PR ANALYSIS	OCEDURE
METHOP Z:		
· BASIC WIND SPEED (V)		V=90 MPH
- THIS VALUE TAKEN FROM CONTRE REGION CODE WEBSITE - NOTE : FIG. 6-1 OF ASCE 7-05 YIELDS SAME VALUE		
• KA = 0.85 FOR BUILDING STRUCTURES		Kd=0.85
- DETERMINDE FROM TABLE 6-4		
• MPDIZTANCE FACTOR (I)		I = 1.00
- PER TABLE 6-1 FOR BUILDING CATEGURY I		
· TOPOCARAPHIC FACTOR (KZL)		Fzt= 1.0
- PER 6.5.7.2, Ket = 1.0		
· VELOCITY PRESSURE EXPOSURE COEFFICIENT (Kz or Kh)		
- EXPOSURE C AS PER 6.5.6.3 - TABLE 6-3 - KN DET. AT HEIGHT N = MEAN ROOF HT. (BY LINEAR	2 INTERPOLI	TION IF NEC.)

Soundy Drive, Suite C, State MMENTS אואס לאאנ		Fax: (814) 867-9151	Date Ckd By Date	Pageof1
- 4616467 (\$7	N			
- <u>Height (F</u> 0-15				
20	0.85	na ana ana ana ana ana ana ana ana ana		
25	0.90			
30	0.98	na lan se lan na lan se la serie de la construction de la construcción de la construcción de la construcción d La construcción de la construcción d		
40	1.04			
50	1.09			
	NFRS AND C&C	VALUES		
· VELOCITY PRESS	225 (0 20 0)			
- PER 6.5.10	$0_{2} = 0.00256$	Kz Kzt Kd V ² I (¹¹⁶ /5t ²)		EQ. 6-15]
Ex. CALC.)				
(0-15) 94	= 0.00256 (0.85)(1	.0×0.85)(90 MPH) (1.0)		
		982 PSF NO SAY 15.0 PS	E	
HEIGHT (FT.)	Kz_	_2E_(PSF)		
0-15	0.85	15.0		
u na mana ana ao amin'ny sorana amin'ny sorana amin'ny sorana amin'ny sorana amin'ny sorana amin'ny sorana amin Romana amin'ny sorana				
	0.94	6.6		nenne e venenne men men general venen general venen de v
	0,98	17.3		
*->				
50	1,09	19.2		
(3:60 FA CAPET)	빅 1.0575	18.6 = gp		
(4-0 PARAGET) VAREHDOSE	0.992	17.5 = 20		
(5:0 ARAFET)	1075	18.9 = 2p		
* -> MEAN ROOF	HE16HT(h) = 40'			
$: 9_{h} = 18.3$	1/258			9h= 18.3 b/ft
				$K_{h} = 1.04$

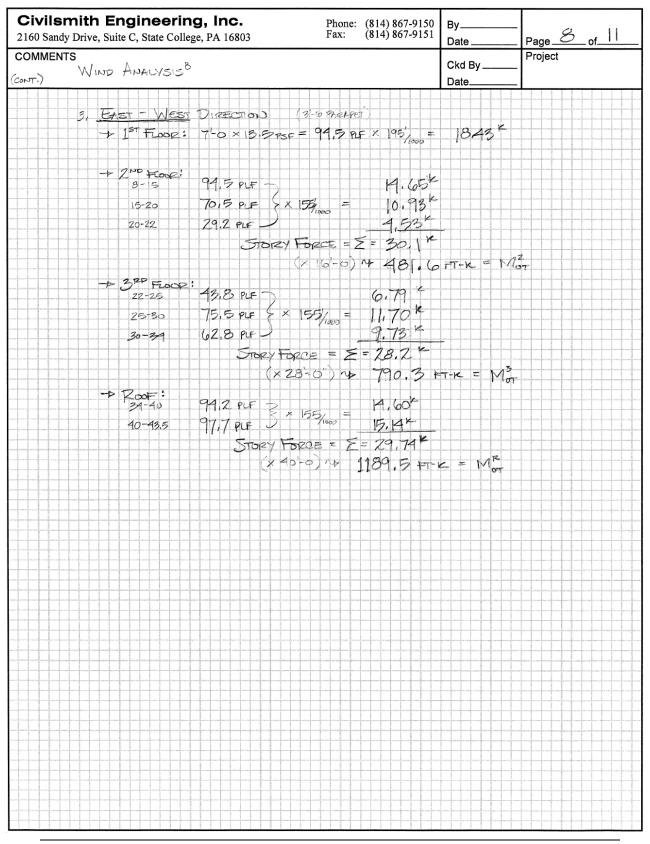

PAGE 32 OF 87

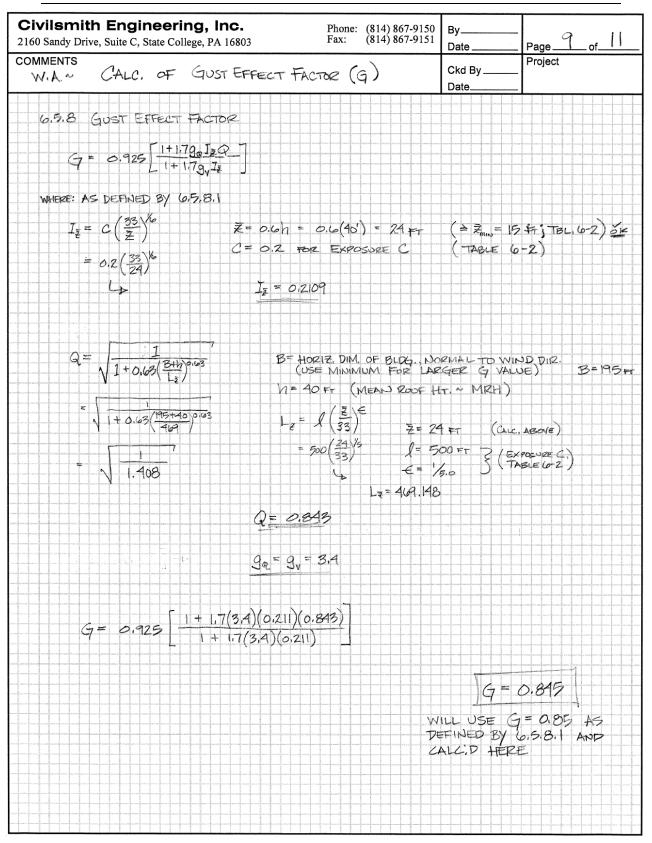
Civilsmith Engineering, Inc. Phone: (814) 867-9150 2160 Sandy Drive, Suite C, State College, PA 16803 Fax: (814) 867-9151	By Date		
WIND ANALYSIS	Ckd By Date	Project	
• GUST EFFECT FACTOR (G) -> SEE PG. 9 OF WIN - PER 6.5.8.1	PANALYSIS —P	6= 0.85	
· ENCLOSORE CLASSIFICATIONS - PER 6.5.9/6.2. DEFINITIONS		ENCLOSED	
· INTERNAL PRESSURE COEFFICIENT (GCR) - FIGURE 6-5, ENCLOSED BLOGS		GCpi = ± 0,18	
 EXTERNAL PRESSURE COEFFICIENT(S) (CP) WINDWARD WALLS LEEWARD WALLS (PER F14, 6-6) 		Cp = 0.8 (W)	
-> NORTH- SOUTH DIRECTION (WIND NORMAL TO 280 L= 195 FT 4/3= 0:696 -2+ (0-1) B= 280 FT		$C_{p} = -0.5$ (L _{NS}	
-> EAST - WEST DIRECTIONS (WIND NORMAL TO P L= 280 FT $L_B = 1.436$ Zr $(By L.1.)$ B= 195 FT	5 Fr. WALL)	Cp=-0.913(L_	
- SIDE WALLS • DESIGND WIND LOAD(S) (P) - PER (6.5.12.2.1) P = 2GCp - 2i(GCpi) (16/ft ²)		(Eq. 6-17)	
- PER 6.5.12.2.4 (PARAPETS) - $P_P = 2P GC_{Pn}$ (16/52) W: (3Cm = + 1.5 = - 1.0	(WINDWARD) (LEEWARD) (Eq. 6-20)	
(EX.CALC) ~ DESKIN WIND LOADS FROM 0-15 FT. ON V OF NORTH-FACE (280 FT)	VINDOWIARD 3	Sipe	
$P = \left[(15 \text{ psf})(0.85)(0.8) \right] - \left[(18.3 \text{ psf})^{+}(0.18) \right]$			
P= 6,906 PSF 13,494 PSF (SELECT MAX	. VALUE)		
F. = 13.5 PSF (WINDWARD ~ N	\$		
$P = \left[\left[(18.3 \text{ ps})(0.85)(-0.5) \right] - \left[(15.0)(\pm 0.18) \right] = -\frac{5.1}{10.5}$ $\therefore P = -10.5 \text{ psf} \qquad (\text{Leeward } \text{M-S})$	1		

PAGE 33 OF 87

2160 Sandy Drive, Suite C, State College, PA 16803 Fax: (814) 867-9151 COMMENTS 4			Date Page of		
(.TCAO	WIND +	+NALYSIS4			Ckd By Date
280'					
			NORTH - SOUTH DIREC		
	HEIGHT (FT.)	- U~	Zh (PSF)	FWINDWARD (
	0-15	15.0		13.5	-10.5
	20	15.9		4.	- 10,6
	25	16.6	G-11W/L	14.6	- 10,8
	30	17.3	0.85 +0.8 -0.5	15.1	-10,9
	40	18.3		15.7	-11.1 *
	50	9.2	GCpi	6.4	- 11,2
REAPET(5		±0.18		
(3-6)		C 18.6		27,9	- 18,6
(4-0)		8p= } 17.5	GCpn	26.3	- 17.5
(5-0)	* 45	- 18.9	+1.5 (W)	28,4	-18,9
	PPLICABLE		-1.0 (-)		
**************************************	ATTLICAELE				* - LEEWARD P CONSTANT USE VALUE AT 24
					USE VALUE AT 24
195			EAST + WEST DIRECT	TION	
	EIGHT (FT.)	9,7 (PSF)	gh (PSF)	PWINDWARD (P	F)_ PLEEWARD (PSF)
	0-15	15.0	8.3	13.5	
	20	15.9		4.1	
	25	16.6	G CP	14.6	
	30	17.3	G CP 0.855 to.8 -0A	15.1	
	40	18.3			-3.13
			GCR	15.7	
	50	19.2	±0118	16,4	
ARAPET(S					
(3'-6)	43.5	<u> 18.6</u>	GCar	27,9	
(1+0)	32	8P 5 17.5	GCPn +1,5(W)	2.6.3	-17.5
(5-0)	45	-18.9	-10(F)	28,4	- 18 9

PAGE 34 OF 87

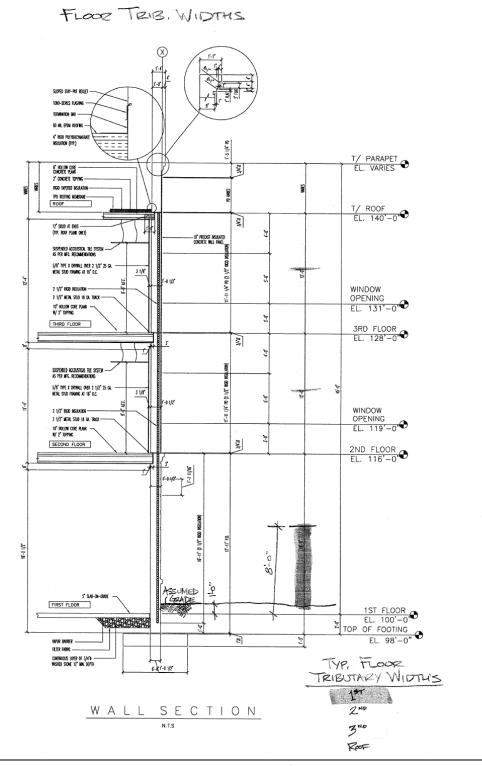

PAGE 35 OF 87


Civilsmith Engineerin 2160 Sandy Drive, Suite C, State Colleg	By Date	Pageof	
COMMENTS	Ckd By		
(CONT.) WIND ANALYSIS		Date	-
· TRIBUTARY WIDT	IS FOR EACH FLOOR (SEE APPEN	NOIX B)	
→ 1 ST FLOOP (EL. 100-0)	$T_w = 7' - \omega''$		
-> ZNO FLOOR (EL. 116-0)	$T_{W} = H^{\perp} S^{*}$		
-> 3PD Frame	$T_{W} = 12^{1} - 0$		
-> 3PD France (E1. 128-0)			
-> Poot	TW = VARES (6-0 + PARAPET)		
(EL MO-O)	1. 3-6 PARAPET ~ Tw= 9-6		
	2. 4-0 Parter ~ Tw= 10-0		
	3. 5-0" PARAPET N TW = 11-0		
· STURY FORCE AN	D OVERTURN MOMENT		
1. WAREHOUSE (:	SECTION D-D)		1999 - M. Maria M. M. W. Maria Shino and Antonia Strategy Stranger Stranger Stranger Stranger Stranger Stranger
	WIDTH = 14' + 4' PARAPET = 18'		
* W +	ROM 114' to 132'-O ELEV.	17-5	
[H-15]-O *	13,5 PSF = 13,5 PLF	1.89 K	0,54
15-20 5 ¹ -0 ×	H.1 PSF = 70.5 PLF	1.89 ^k 1.87 ^k	2.82
20-25 5'-0 ×	14.6 BF = 73.0 FLF (14.1)	10.22*	2.92×
75-28 3-03	$(14.6 \text{ esc} = 73.0 \text{ pcc} (\times 140' =)$ $(15.1 \text{ psc} = 45.3 \text{ pcc} (\times 140' =)$	6.3474	[.812 ¹⁴
	26,3 PSF = 105,2 PLF	14,728	1,208×
		111160	116-00 Common series and and and and a series of the serie
	NORTH-SOUTH DIR. STURY FORCE = Z =	43.05×	+2,232K (LOEWARD)
	an fan it fan	al en a fan de	
(Moment Moment Mor= 43.05)	EAST-WEST DIR. STORY	FORCE =	<u> </u>
	(28)		
Mor= 1205.	1 FT-K Mor = 406.9 FT-K		
1107 160/1			

PAGE 36 OF 87

2160 Sand	mith Engineering, Inc. Phone: (814) 867-9150 y Drive, Suite C, State College, PA 16803 Fax: (814) 867-9151) By l Date	Page of Project
CONT.)	WIND ANALYSIS	Ckd By Date	
	2. NORTH - SOUTH DIRECTION $\rightarrow 1^{\text{ST}}$ FLOORZ: 7-0 × 13.5 RSF = 94.5 R.F.	× 280/1000 =	26.964
	-> ZNP FLOOP .: 8-15 7-0 × 135 PSF = 94,5 PJF × 280/10	- 20 404	
	$\frac{8+5}{16+20} = \frac{7-0 \times 17}{17} \text{ psf} = \frac{14}{10} \text{ sf} \text{ f} \frac{1}{10} \text{ sf} \frac{1}{10} $	= 10,-16	
	$\frac{1}{10} \frac{1}{10} \frac$	= 8.176 ^K	
	X LEEWARD 4-0 × 11,1 PSF = 155,4 PLF STORY FORCE =	7 12.714	- (NOT ADVCV)
	+ 2 ²² FLOOR:		
	→ 3 ^{PD} FLOOR : 22-25 3'-0 × 14,6 BF = 43,8 × 280/1000 25-30 5'-0 × 15,1 BF = 15,5	= 12	
	30-34 A'-0 * 15.7 BF = 62.8	= 17.584	
	STORY FORCE =	E= 51.04	
	-> Proof : 34-40 6-0 + 15,7 85 = 94,2 RE × 280/000		
	40-45 5-0 PARAPET × 28/ PSF = 1/2 P.F. × 280 STORY FORCE =		
	• OVERTURATING MOMENT (Mor) -> 1ST FLOOR:		
	-> 200 Fraze: 54.4 × 16-0 = 870.4 FT-1	perior la constante en participation de la constante de constante de la constante de la constante de la consta Estatua de la constante de la co Estatua de la constante de la c	
	-+ 3" FLOOP: 51:0" × 28-0 = 1428 FT-K-		
	-+ Ras: 66.14 × 40-0 = 2645.4 F		

PAGE 37 OF 87



PAGE 39 OF 87

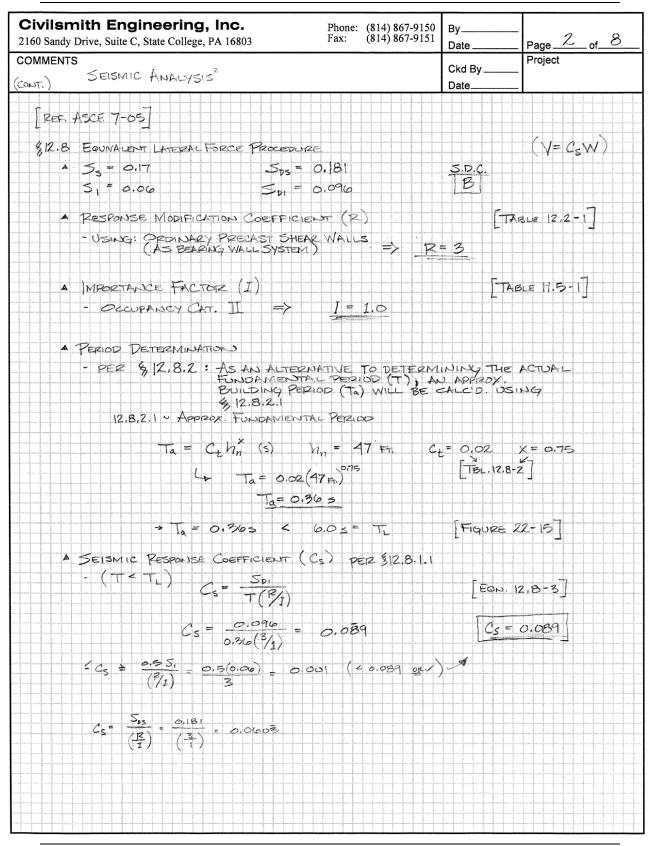
TECH REPORT I

10 of 11

PAGE 40 OF 87

Civilsmith Engineering, Inc. Phone: (814) 867-9150 2160 Sandy Drive, Suite C, State College, PA 16803 Fax: (814) 867-9151	By <u>SES</u> Date <u>9/26/08</u>	Page
COMMENTS	Ckd By	Project
WIND LONADS (REFASCE 7-05 CHG)	Date	PSU-ARL BLDG-#5
		12407473
FROM CONTRERECTION CODE: BASIC WIND SPEED = 90 MPH		and and the second states an
IMPORTANCE FACTOR, I = 1.00 (TABLE 6-1)		
EXPOSURE CATEGORY = C (SECT 6.5.6.3)		nouse a sure managemention is a sure sure of the sure
ADJUSTMENT FACTOR, 2=1.53 (F10-6-2)		
$Ps = \Lambda k_{zt} \pm P_{s_{2s}}$		
╶╷╎╼╎╴╬╴╬╸╫╸╞╸╬╍╬╼╡╼┫╼╋╼╡╼╪╼╪╼╋╼┝╼┫╍╠╌┫┑╫╴╈╸╗┝╌╡╺╞╼╏╸┾╼┨╼╄╼╫╼┝╖╬╼┝╍╬╼╠╼╢┉╢╼╫╍╬ ╼╎╘╌┠╴╗┉╅╸┽┙┫┉╞╍╬╍╬╼╟╴╢ <mark>╢</mark> ╎╧╔╾┽╼┨┲┝ <u>╋</u> ╼┉╪╲╪┑ <mark>┲</mark> ╱╢╍╴┉╴╧╗╹┨┲┙ ╏╔╌╎╴ ┨╗╴╣		
$F_{2t} = 1.0$; $P_{s_{20}} = 12.8$ (F16-6-2)		
P3 = (1.53)(1.0)(1.0)(12.8 FF) = 17.6, SAY 20PS	F	
X-DIRECTION (EAST-WEST) - ENGINEER:	- VALDE	
A-PIRECION (EASI-LUESI) - ENGINEEK	PRESSURE	
	RESSURE	
2^{ND} FLOOR TRUB HT = $\frac{1}{2}(18') + \frac{1}{2}(12') = 15'$		
312 FLOOR TRIB HT = \$ (12') + \$ (12') = 12'		
POOF TRIBHT = $\frac{1}{2}(12') + \frac{4'}{2}PRRAPET = 10'$		
ZOPPOS:		
2"" FLOOR = 20 PSF × 15' × 195' = 1000 = 58,5 K		
3 PD FLOUR = 20 PSF × 12' × 195' = 1000 = 46.8 K	1999 - 19	
ROOF = 2015 × 10' × 195' = 1000 = 39.0 K		
NOP - 2013F×10 ×113 71080 - 37.0-		
Y-DIRECTION (NORTH-SOUTH)		
W10777 = 280'		
2ND FLOOR TRIB HT = 15		
3^{RP} FLOOR TRIB HT = 12		
$ROOF TRIE HT = 10^{\circ}$		
LOADS:		
2N# FLOOR = 20 RSF x 15 x 280 = 1000 = 84.04	n a na a na an an an an an an an an an a	neren berezenteren errentzen errentzen errentzen errentzen errentzen errentzen errentzen errentzen errentzen er
3"====================================		an a
ROUF = 20PSF × 10 × 280 - 1000 = 56.0 K		

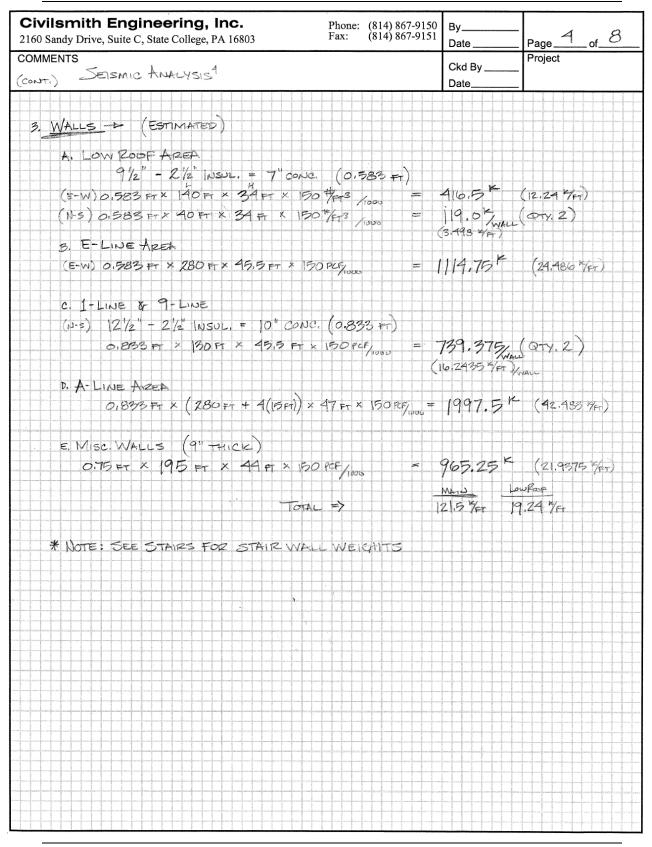
PAGE 41 OF 87


TECH REPORT I

SEISMIC ANALYSIS

(Equivalent Lateral Force Procedure)

Civilsmith Engineering, Inc. Phone: (814) 867-9150 2160 Sandy Drive, Suite C, State College, PA 16803 Fax: (814) 867-9151	By Date	Page_1_of_8_
COMMENTS SEISMIC ANALYSIS	Ckd By Date	Project - -
[REF IBC 2006~ SECTION 1613 AND ASKE 7-05~ CH, 1] &	12]	
SEISMIC CONSIDERATIONS: • (PER CENTRE REGION CODE) -> S5 = 0.17	5, = 0.06	- USED FOR ANALYSIS
* COMPARE TO ASCE 7-05-7 (5= 0.19 Fig.22-1	S ≈ 0.05 Fig22-2	
• SITE CLASS + D (PER 1613.5.2). SOIL PROPERTIES UNKNOWN : US	SE SITE CU	ASS D
• $S_{MS} = F_a S_s$ [EQN 10-37] • $S_{MI} = F_v S_s$	క, [్ల్యె	16-38]
= 1.6(0.17) [TBL 163.5.3(1)] = 2A($S_{MS} = 0.272 (0.221) = 0.12$	(2010) 14 1000	TBL.1613.5.3(2)
• $S_{ps} = \frac{7}{3}(S_{ms})$ [EQN 16-39] • $S_{p1} = \frac{7}{3}(S_{p3} = 0.1813)$	dari depatementamente conte	
SEISMIC DESIGN CATEGORY * BUILDING OCCUPANY -> TYPE II - SHORT-PERIOD RESPONSE: II <> Sps = 0.181 => B	[7781 1613,5	z.6(1)]
$\mathbb{I} \iff S_{\mathcal{V}_1} = 0.09(b) = \mathbb{E}$	[TBL 1613.F	2.6(2)]
CATEGORY B		
EQUIVALENT LAMERAL FORCE PROCEDURE PERMITTED AND USED FOR ANALYSIS		


PAGE 43 OF 87

PAGE 44 OF 87

Civilsmith Engineering, Inc 2160 Sandy Drive, Suite C, State College, PA 16	0 By 1 Date		
COMMENTS			Project
(CONT.) SEISMIC ANALYSIS		Ckd By Date	-
		Date	
 EFFECTIVE SEISMIC M 	leight (W)		PER \$ 12.7.2
-> NCLUDES :			
W = TOTAL DE	EAD OAD PLUS		
L MINIMUM	OF 25% OF FLOOR LIVE LOAD IN	STORAGE	AREAS
		and a second sec	
O PSF OF	PROVISIONS OF \$4.2.2 OR N FLOOR AREA (USE GREATE	R OF)	ang managana ang mana pana at tanàng na ang na mang na mang mana panana panana panana panana. Ang panana panana panana panana panana panana panana bana mpanana banana panana banana panana banana panana ban
3. TOTAL OF	PERATING WEIGHT OF PERMANEN	JI EQUIP.	
9. WHERE 1	F. (FLAT ROOF SNOW LOND) EXCEN	DS BOPSF.	
	HE UNIFORM DESIGN SNOW LOAD		
(Note: *4	N/A, Pf < 30 PSF)		ne generalis en la beneralis de construction de construction de construction de la maiorie de construction de const
1. Cowinhos - D			
	24" Cols		
WT.: 2 Fr × 2 Fr × 1	50 PCF/ = 0.6 M/PT		COL. = 0.10 4/FT
·····································	이가 날 수가 있는 것이 가슴 가슴 수 있는 것이 가지 않는 것이 같은 것이 가슴 가지 않는 것이 가슴 가지 않는 것이 가슴 가지 않는 것이 가슴 가지 않는 것이 가슴 것이 가슴 것이 가슴 것이 가슴 것이다.		
TRIB: POOF = 6 N	$3^{20} = 12$ ~ $2^{ND} = 15$		
2. <u>Beams</u> \rightarrow a. Inverted Tee's (1T):	ROOF (361718) = 0.575 4		F = 450 ^K
	ROOF (36 IT 18) = 0.575 4/P TOTAL LENGTH OF = 783 FT		R = 450 ^k
	3PP (361720) = 0.625 Km Total Length of = 783 FT		3 ^m = <u>490</u> ^K
	2ND (361728) = 0.900 K/P TOTAL ENGTH OF = 660 FT	(636-452)	2 ^{we} = <u>594</u> ^k
B. RECTANGULAR (RB):	ROUF: 16 Fr		2= 4 0 K
* ALL RES'S ASSUMED			R= <u>4.8</u> *
TO BE 12 * 24 ω= 0.3 4/ετ	3°0 : 16 FT		3 ^{PD} = 4.8 ^K
	2NO 1 72 FT		2NO= 21.6 K
			An Antoine A man annan an Antoine A na Annais an Annais ann an Annais ann a' Annais ann an Annais ann an Annais An Annais ann an Annais ann
			n la conference con la construcción con la construcción de la construcción de la construcción de la construcción

PAGE 45 OF 87

PAGE 46 OF 87

	Suite C, State College, SMIC ANALYS			4) 867-9151	Date Ckd By Date	Pageof
	CORE PLANIE	(HCP)				
* 72001	8 11 14	62 P5#	× 39,050 sF/		2421.	I K
A 3 ^{PD}	10 IN NOF -	67.5 ps	F × 37,870 ;	#71903	2556.	23 ^k 3 ^{ep}
	12 1N Nor	72.5 psp	× 33,150 sr		2403.3	8× Z***
MISCELLA	and the second se					
	TOPPING = (? *: 37870 sf *: 33150 sf				947* 829*	3°0 2 °°
Poo	TIONAL 12 P		= 468.6		470*	
3º 2 ²	₽: 37870 ₽: 33150	× 12 rs	F/ _{Joon} - 454.4 = 397.8		454× 398×	2 ^{N0}
ALTER AND ADDRESS OF A DESCRIPTION OF A DESCRIPTION	F <u>AREA</u> (A SEAMI (ASSUMII		3° LEVEL) WT W= 0.900 "	7 6 4)		
			= 36.9 74		377	(LR+3")
	еле Tee's (DT 47 psf (5915	=): ===================================	278.005 k	~	278*	
A Z ^{<i>H</i>}	FORPING (250 REPOSE (ERIE	5F): > 5F)/1000	- 147.875		48×	

PAGE 47 OF 87

TECH REPORT I

Civilsmith Engineering 2160 Sandy Drive, Suite C, State Colleg	By Date	Page_6_of_8			
COMMENTS	6			Ckd By	Project
(CONT.) SEISMIC ANAL	YSIS			1	-
				Date	
7 STARS +					
A WALLS					
9": (0.75m) 2(26.5	FT) + 2(10 FT)](19	0/+3)	= 8.2	2125 /FT	* A SETS OF STAIRS
		71.000			(32.85×/FT)
		•			WT. OF STAIR WIALS
	an la construction de la construction La construction de la construction d				1545 K
B. STAIRS					12712
	DAY EXISTING CAL	CS. (*	76 BEF 14	DAD 500 D	SERS & LANDINGS)
					and a considered
A 320 -0 -42	0 SF (175 PSF)/100	= 78	6 K		
การใกลกะเมื่อมาระสุขภาพสู่สารหมู่สารหมู่สารหมู่สารหมู่สารหมู่สารหมู่สารหมู่สารหมู่สารหมุ่งสารหยุ่งสารหรือหมารไทย	en fan inder in de fan de f	n ferrer a ferrer of the construction of the second			
A 2ND -D 92	12 SE (17575E)/1000	= 65	, k		
+ TOTAL LOADS					
				KIP)	
A ROOF: (TRIB=	6 #T)			*	
Columnes	016 K/FT (6 FT)	× 18 cou	= (o	4.8	
BEAMS	4504 + 4.8	<u>*</u>	= AF	1.8	
B" HC RUNK	450 × + 4.8 121.5 %FT (6) 2421. ×10	FT)	= 242	4.8 9.0	
MISC. (12PSF) STORE WALLS	470 KIP 32.85 4/Fr (6 Fr		2	0.0	
	24.99.1HT 1.90 HT			The second secon	
		\mathbb{N}	F. = 73	26.8 0	@ Pour LVL,
A 3PD 1 (TRIB. = 12	FT				
	0.6 4Fr (12FT)	v od	= 17	2.9	
Col. By.	490× + 4.8 (121.5×p++19	× + 37 K	= 53 = 168		
W. 10" HC			168	3,88 56,23	
Mise.	7174 + 45	1 * + 148			
MISC. S.W. STAIRS	32,85 (12.55	A	* 15- * 39- * 73.	5R	
			<u> </u>	3	
		W-	т.= 72<	4440	3RD FER. LVL.
A 2ND: (TRIB. = 15	?FT)				
Cou	0.6(15)(20)		- 180		
BM W	594 + 216 (1215 + 19.24)(15)		= 615		
2"HC Misc	829 + 398		= 240	103,38	
S.W.	32.85 (16)		= 492	75	
STAIRS			- 1.65	2	
			719	4.8 ^K @	ZND FLR LVL
	,	_, K			
	3 - 2 - 2 = 18,7	176			

PAGE 48 OF 87

Civilsmith Engineer 2160 Sandy Drive, Suite C, State C COMMENTS	By Date	Page 7 of 8 Project				
(CONT.) SEISMIC AND	ALYSIS .		Ckd By			
▲ SEISMIC BASE SHE ★ V = Cs W	AR Where Cz= Ox	289		\$ 12.8.1]		
$V_{\rm g} = 0.039$	(4336.8¥) =>	V ₁₂ ==	386 K	(@ 200F)		
$V_3 = 0.089$	(7249.4*)	V3 =	GA5K	(@ 320 Fie.)		
$V_2 = 0.039 ($	(7194.8*)	• • • • • • • • • • • • • • • • • • •		(@2 ²⁰⁰ FLE)		
V _{E455} = 0.089	(18776*)	<u> </u>	1672 ×	(BASE SHEAR)		
OVERTURNING N	Aomersts					
7200 7 = 3 ²⁰ =	16212 FT-K 18060 FT-K 10256 FT-K					
ZNG =	10256 FT.K 44528 FT.K					

3

8 of 8

Seismic Force Distribution Summary for Penn State University- ARL Building #5

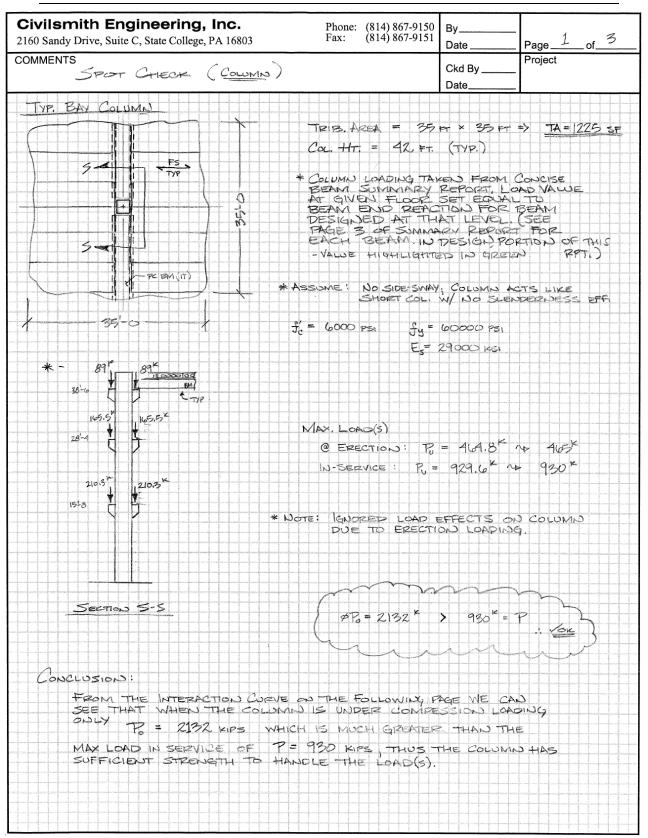
Summary of building floor/roof diaphragms and weights:

Diaphragm	Diaphragm	Diaphragm
Level	Elevation	Weight
	(ft)	(kips)
Roof	42.00	3583.7
3rd Flr	30.00	6029.3
2nd Flr	18.00	4920.5
0	0.00	0.0
0	0.00	0.0
0	0.00	0.0
0	0.00	0.0
Ground	0.00	0.0

5 Mill

14533.49 kips – Total building weight (W)

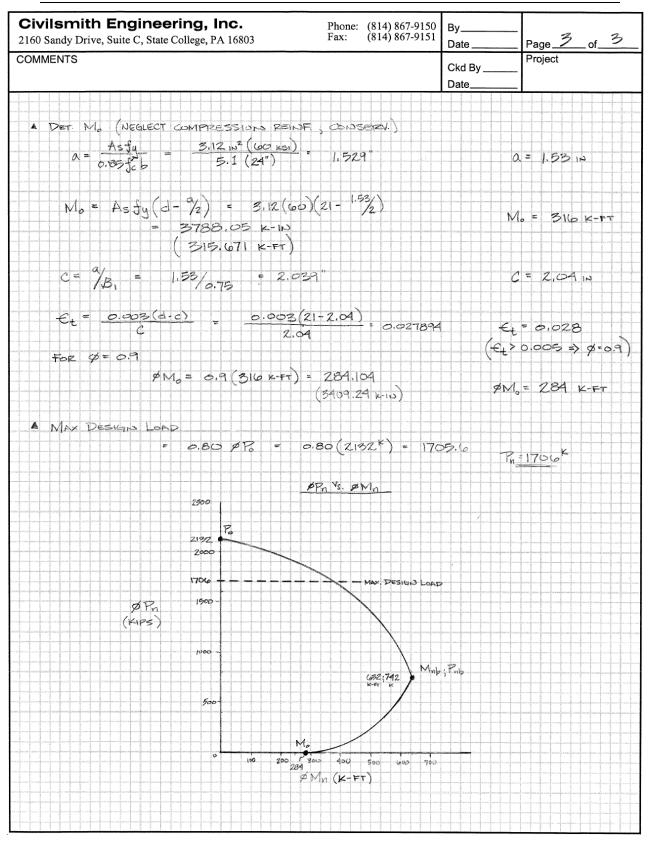
Summary of Design Code Requirements and resultant Seismic Force Distribution to diaphragms:

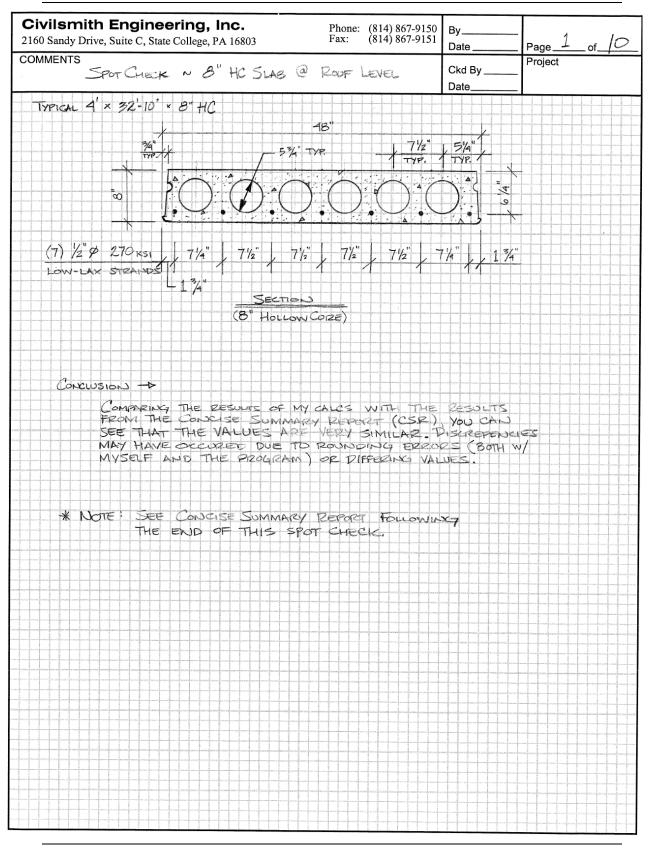

Governing Design Code(s): IBC 2006, ASCE7-05, AND CENTRE REGION CODE

Occupancy Category: Seismic Use Group: Occupancy Importance Factor: Site Classification:	l 1.0 D			
0.2 second spectral response acceler	ration (S _s):	0.170	1.0 second spectral response acceleration (S1):	0.06
	F _a :	1.600	F _v :	2.400
	S _{MS} :	0.272	S _{M1} :	0.144
	S _{DS} :	0.182	S _{D1} :	0.096
Seismic Design Category, bas	ed on S _{DS} :	B ,	Seismic Design Category, based on S_{D1}	В
			Governing Seismic Design Category:	в
Seismic Analysis performed using code pe	rscribed Equ	vivalent La	teral Force Procedure	
Calculated Seismic Response Coeff Seismic Base	,	0.0607 882.9	kips, distrubuted to diaphragms as shown below:	

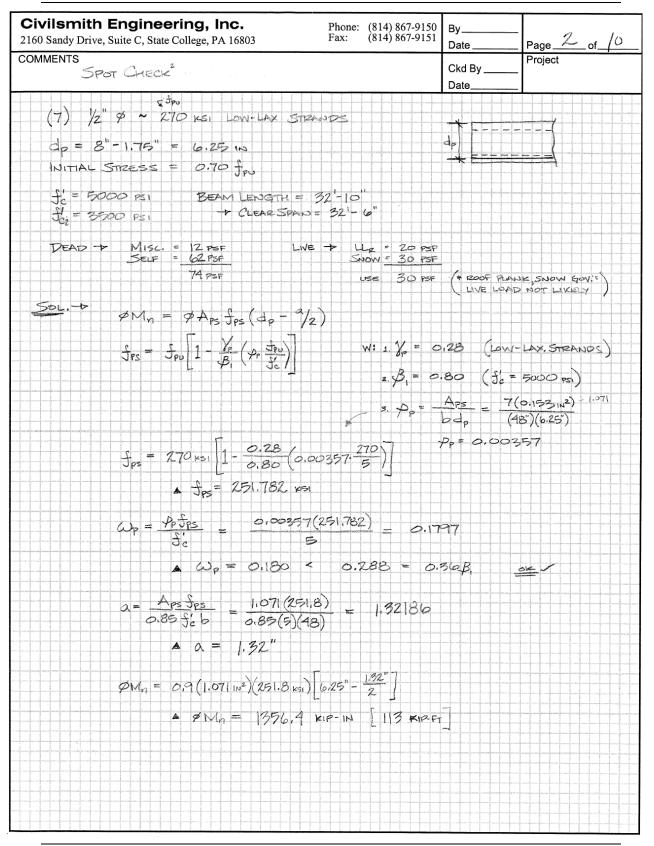
TECH REPORT I

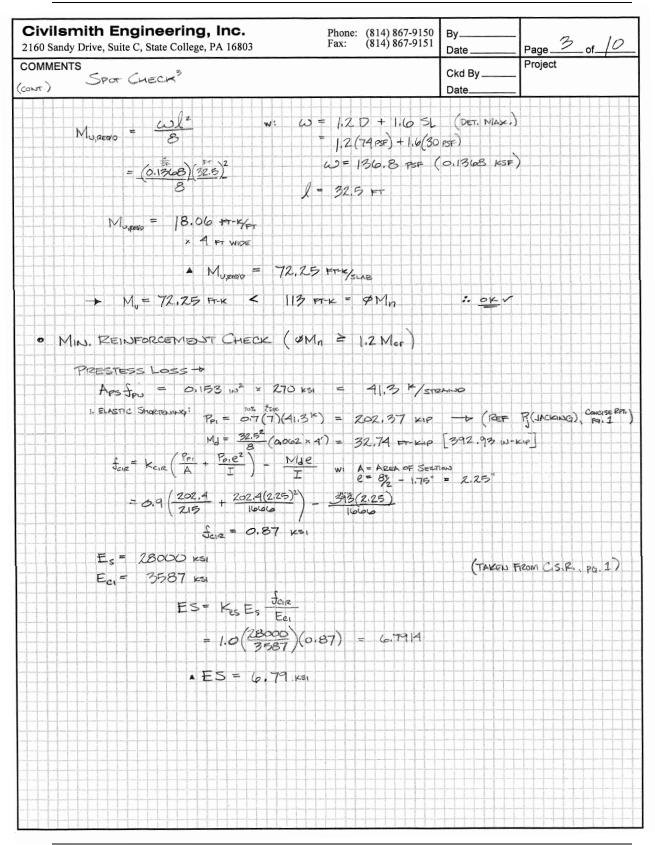
SPOT CHECKS (Column ~ Hollow-Core Slab ~ Rect. Beam)


PAGE 51 OF 87

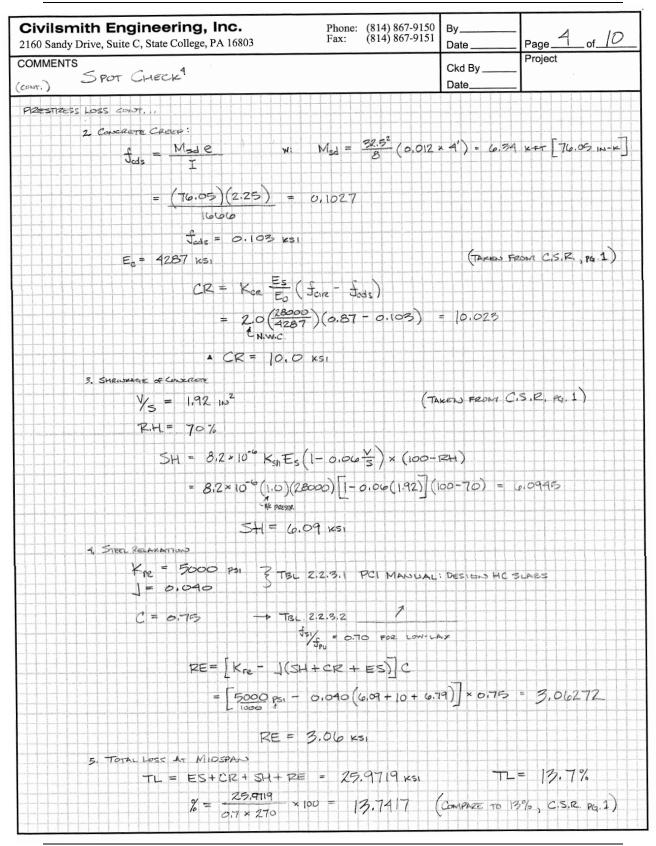

PAGE 52 OF 87

160 Sandy Drive, Suite C, State College, PA 16803 Fax: (814) 867-9151 OMMENTS (Fore Sport Cruzere)	Date	Page of Project
CONSTRUCTION OF INTERACTION CURVE FOR PRECAST COL.	Ckd By	Tioject
	Date	
$f_e^{\dagger} = 6000 \text{ psi}$ $B_1 = 0.85 + 2(0.05) = 0.75 \text{ y}_{\pm} = 0.85 + 2(0.05) = 0.75 \text{ y}_{\pm} = 0.000 \text{ psi}$	12"	
$f_{1,2} = (00000 \text{ ps}_{1,2})$ $d_{1} = 74^{\circ} - 72^{\circ} = 21^{\circ}$		
$E_s = 29000 \text{ ks}, d' = 3"$	$=5f_{c}^{\dagger}=0.85(6)$	= 5,] ksi
$24^{"}$ sq. co. $A_{g} = 24^{"} * 24^{"} = 576$	······································	
	10 24 m ² =	= 3172
24" #4 TIES @ 22" O.C. $A_s = A_s = A(1.560 \text{ ms}^2) =$ 14" COVER TYP.	/2	
2A"		
DET P. (NO PRESTRESSING STEEL)		
$F_{0} = F_{0} = 0.85 f'_{c} (A - A'_{s} - A_{s}) + (A'_{s} + A_{s}) f_{4}$		
$= 5.1 \text{ ks}_1 (576 \text{ in}^2 - 6.24 \text{ in}^2) + (6.24 \text{ in}^2)(60 \text{ ks}_3)$		
= 3280. 18 KIPS ->		= 3280 ^K
$P_{0} = 0.65(3280^{2})$ $t_{meo} = 2132.11^{k_{1}p_{5}} \rightarrow 2$	ø P	= 2132 K
	ana ana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny Ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'	
A DET. Prob & Mrob		
$d_t = d = Z1^n$ $a = \beta_1 c = 0.75(12.6^n) = 9.45^n$		
	$y' = \frac{a}{2} = 4.$	7253
$A_{\text{COMP}} = ab =9.45 \text{ to}(24 \text{ to}) = 226.8 \text{ to}^2$		
(W/ NO PRESIDENCE STEEL)	na ma na mainta ni a man' na manana kao amin' na manina amin' na manana kao amin' na manana kao amin' na manana Manana manana manana kao amin' na manana kao amin' na manana manana manana manana kao amin' na manana kao amin'	
$P_{nb} = (A_{comp} - A_s)(0.85f_c) + A_sf_s - A_sf_s$		
$= (2216.8 \text{ is}^2 - 3.12 \text{ is}^2)(5.1)$	1999 - Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constanti Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Consta	
=] 40,77 [⊭] →	P _a	6 = 1141 ^k
#17hb = 0.65(1141 °) = 741.5 °	an han an a	b= 742 ^k
$M_{vb} = (A_{evre} - A'_{s})(y_{t} - y')(0.85f'_{c}) + A_{s}fy'(y_{t} - d') + A_{s}$	$f_{t}(d-y_{t})$	
$= (226.8_{10}^{2} - 3.12_{10}^{2})(12'' - 4.73'')(5.1) + 3.12(60)(12 - 3) + 3.12(60)(12 - 3) + 3.12(60)(12 - 3) + 3.12(60)(12 - 3)) + 3.12(60)(1$	2(40)(21-12)	
= 166817 K-IN		
(972. 391 K-FT)	0.1052 Mr	16 = 973 KFT = 632 K-FT
	2 Mab	= 63% K-FT

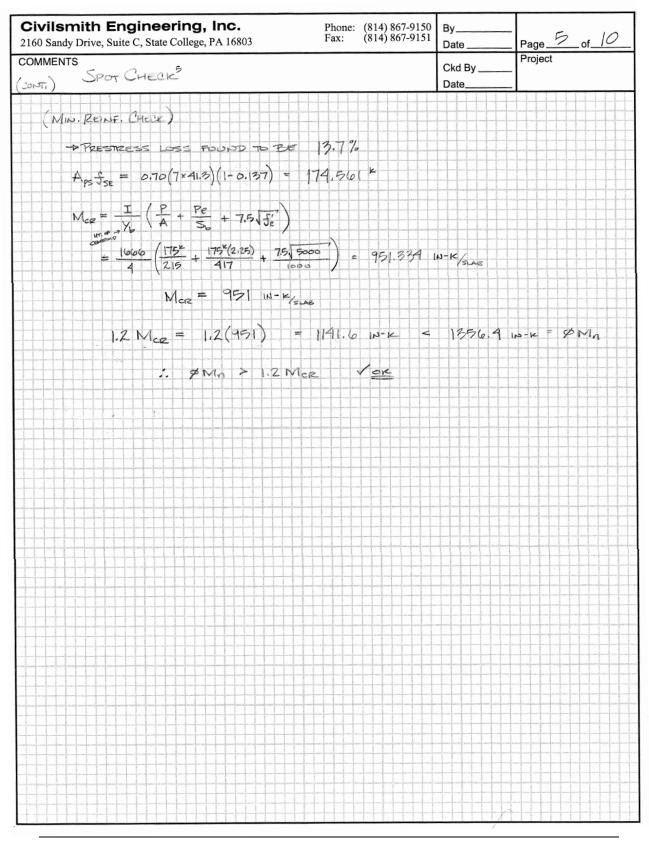

PAGE 53 OF 87


PAGE 54 OF 87

PAGE 55 OF 87



PAGE 56 OF 87



PAGE 57 OF 87

TECH REPORT I

PAGE 58 OF 87

roject: Applied Re	Version 4.46c, (21211, Civilsmith esearch Laborator	Engineering	Mint Soft - OK	ware, Inc		6	o of
roblem: Roof 8" H							
SUMMARY REPORT							
Design Code Used: A							
CONCRETE MATERIAL		Precast Beam					
Concrete Density Compressive Strengt Modulus of Elastic: Strength at Transfe Modulus of Elast.	ity Ec = er f'ci =	5.0 4287 3.5	ksi	NINC			
Cement Content = Air Content = Slump = Aggregate Mix = Aggregate Size = Curing Method = Humidity = Basic Shrinkage Str	0 lb/yd^3 5.00 % 0.00 in 0.40 (ratio fine 0.00 in Moist 70 % cain = 780E-6	to total agg	regate)	Age at Tran Age at Erec Age at Topp Age Topping		= 0.75 days = 40 days = 50 days = 53 days	
BEAM LAYOUT					· · · · · · · · · · · · · · · · · · ·		
Segment/Length No From To ft ft	Offset Z Y in in	Section I Folder	Identificat: Sect:	ion	Topping Par tl bl in in	rameters t2 b2 in in	
1 0.00 32.8	33 0.00 0.00	HollowCo	ore	HC4 'x8"			
Total Beam Length =	= 32.83 ft, Left	Support @ 0.17	7 ft, Right		32.66 ft, Spar	= 32.49 ft	
n an							
PRECAST SECTION PRO Seg. <u>A</u> No. in^2	in ⁴ yb	OSITE) * <u>Sb</u> in ³	St in ³	<u>v/s</u> in	bw width in in	height in	
1 215.0	1666 4.00	(417)	417				
	de			1.92			
* These properties See the Transform PRESTRESSING STEEL	TENDONS	e transformed ties text repo	area of any ort for prop	v reinforcin perties that	g or prestressi include the ar	ng steel. ea of steel.	
* These properties	TENDONS	ties text repo	area of any ort for prop	reinforgin	g or prestressi include the ar		
* These properties See the Transform PRESTRESSING STEEL Prestressing Strand	TENDONS Details Section SWS#1/2"	Offsets x y ft in 0.00 1.	area of any ort for prop End Offs Left	reinforcin perties that et & Type * Right ft	g or prestressi include the ar Tendon Area	ng steel. ea of steel. Jacking Force Pj %fpu	
* These properties See the Transform PRESTRESSING STEEL Prestressing Strand ID Qty Material 1 7 fpu=270 ksi Es= 28000.0 notes: * Strand End Prestressi Calculated Maximum To	TENDONS I Details Section SWS#1/2" ksi Types: B - Fully ng steel is ow re Losses: Initial tal Prestress Ford	Offsets x y ft in 0.00 1. 32.83 1. Bonded, D. D plaxation stra 3.3 %, Fin pes: Pj(jackin Pi(transfe Pe(effectiv	End Offs Left ft 75 0.00 E 75 ebonded, C nd al = 13.0 g) = r) = r) =	reinforcin perties that Right ft 0.00 B - Cut, A - 1 202.4 kip, 195.7 kip,	g or prestressi include the ar Tendon Area in^2 1.071	ng steel. ea of steel. Jacking Force Pj %fpu kip 202.4 0.7	
* These properties See the Transform PRESTRESSING STEEL Prestressing Strand ID Qty Material 1 Tpu=270 ksi Es= 28000.0 hotes: * Strand End Prestressi Calculated Maximum To	TENDONS Details Section SWS#1/2" ksi Types: B - Fully ng steel is ow re Losses: Initial tal Prestress Forc Transfer and Deve	Offsets x y ft in 0.00 1. 32.83 1. Bonded, D. D plaxation stra 3.3 %, Fin pes: Pj(jackin Pi(transfe Pe(effectiv	End Offs Left ft 75 0.00 E 75 ebonded, C nd al = 13.0 g) = r) = r) =	reinforcin perties that Right ft 0.00 B - Cut, A - 1 202.4 kip, 195.7 kip,	g or prestressi include the ar Tendon Area in^2 1.071 Anchored (fully	ng steel. ea of steel. Jacking Force Pj %fpu kip 202.4 0.7	
* These properties See the Transform PRESTRESSING STEEL Prestressing Strand ID Qty Material 1 Tpu=270 ksi Es= 28000.0 hotes: * Strand End Prestressi Calculated Maximum To	TENDONS I Details Section SWS#1/2" ksi Types: B - Fully ng steel is ow re Losses: Initial tal Prestress Ford	Offsets x y ft in 0.00 1. 32.83 1. Bonded, D. D plaxation stra 3.3 %, Fin pes: Pj(jackin Pi(transfe Pe(effectiv	End Offs Left ft 75 0.00 E 75 ebonded, C nd al = 13.0 g) = r) = r) =	reinforcin perties that Right ft 0.00 B - Cut, A - 1 202.4 kip, 195.7 kip,	g or prestressi include the ar Tendon Area in^2 1.071 Anchored (fully	ng steel. ea of steel. Jacking Force Pj %fpu kip 202.4 0.7	
* These properties See the Transform PRESTRESSING STEEL Prestressing Strand ID Qty Material 1 7 Tpu=270 ksi Es= 28000.0 notes: * Strand End Prestressi Calculated Maximum To Prestressing Strand ID Diameter End	TENDONS Details Section SWS#1/2" ksi Types: B - Fully ng steel is <u>Gow re</u> Losses: Initial - tal Prestress Ford Transfer and Deve Debond Length ft T0.00	Offsets x y ft in 0.00 1. 32.83 1. Bonded, D _ D elaxation stra 3.3 %, Fin pi (transfe Pe (effectiv elopment Lengt fse	End Offs Left ft 75 0.000 E 75 0.000 E 75 ebonded, C nd al = 13.0 g) = r) = e) = hs	reinforcin perties that Right ft 0.00 B - Cut, A - 1 202.4 kip, 195.7 kip, 176.1 kip of Transfer	g or prestressi include the ar Tendon Area in^2 1.071 Anchored (fully a x = 16.42 ft Development	ng steel. ea of steel. Jacking Force Pj %fpu kip 202.4 0.7	
* These properties See the Transform PRESTRESSING STEEL Prestressing Strand 1 Tpu=270 ksi Es= 28000.0 notes: * Strand End Prestressi Calculated Maximum To Prestressing Strand 1D Diameter End in 1 0.50 LEF 1 0.50 RIGH	TENDONS TENDONS Details Section SWS#1/2" ksi Types: B - Fully ng steel is ow ra Losses: Initial tal Prestress Ford Transfer and Deve Debond Length ft T 0.00 T 0.00	Offsets x y ft in 0.00 1. 32.83 1. Bonded, D - D elaxation stra 3.3 %, Fin Pi (jackin Pi (transfe Pe (effectiv elopment Lengt fse psi 155343	End Offs Left ft 75 0.00 E 75 0.00 E 75 13.0 g) = r) = e) = hs fps psi 264186	reinforcin perties that Right ft 0.00 B - Cut, A - 1 202.4 kip, 195.7 kip, 176.1 kip of Transfer in 25.86	g or prestressi include the ar Tendon Area in^2 1.071 Anchored (fully a x = 16.42 ft Development in 80.27	ng steel. ea of steel. Jacking Force Pj %fpu kip 202.4 0.7	
* These properties See the Transform PRESTRESSING STEEL Prestressing Strand ID Qty Material 1 Thu=270 ksi Es= 28000.0 notes: * Strand End Prestressing Strand ID Diameter End in 1 0.50 LEF	TENDONS Details Section SWS#1/2" ksi Types: B - Fully ng steel is ov re Losses: Initial tal Prestress Ford Transfer and Deve Debond Length ft T 0.00 T 0.00 LF-WEIGHT Linear Weig	Offsets x y ft in 0.00 1. 32.83 1. Bonded, D = D Plaxation stra 3.3 %, Fin Pi (jackin Pi (transfe Pe (effectiv Plopment Lengt fse psi 155343 155343	End Offs Left ft 75 0.00 E 75 0.00 E 75 13.0 g) = r) = e) = hs fps psi 264186	reinforcin perties that Right ft 0.00 B - Cut, A - 1 202.4 kip, 195.7 kip, 176.1 kip of Transfer in 25.86	g or prestressi include the ar Tendon Area in^2 1.071 Anchored (fully a x = 16.42 ft Development in 80.27	ng steel. ea of steel. Jacking Force Pj %fpu kip 202.4 0.7	
* These properties See the Transform PRESTRESSING STEEL Prestressing Strand ID Qty Material 1 Tpu=270 ksi Es= 28000.0 notes: * Strand End Prestressi Calculated Maximum To Prestressing Strand ID Diameter End in 1 0.50 LEF 1 0.50 RIGH BEAM AND TOPPING SE Segment/Length	TENDONS Details Section SWS#1/2" ksi Types: B - Fully ng steel is over Losses: Initial tal Prestress Ford Transfer and Deve Debond Length ft T 0.00 T 0.00 LF-WEIGHT Linear Weig Beam T	Offsets x y ft in 0.00 1. 32.83 1. Bonded, D _ D plaxation stra 3.3 %, Fin Pi(jackin Pi(transfe Pe(effectiv Plopment Lengt fse psi 155343 155343	End Offs Left ft 75 0.00 E 75 0.00 E 75 13.0 g) = r) = e) = hs fps psi 264186	reinforcin perties that Right ft 0.00 B - Cut, A - 2 202.4 kip, 195.7 kip, 176.1 kip of Transfer in 25.86 25.86	g or prestressi include the ar Tendon Area in^2 1.071 Anchored (fully a x = 16.42 ft Development in 80.27	ng steel. ea of steel. Jacking Force Pj %fpu kip 202.4 0.7 developed)	

Summary Report

7 of 10

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: Roof 8" HC Plank

No. ft ft kip/ft kip/ft 1 0.00 32.83 0.22

EXTERNALLY APPLIED LOADS

					Load Intens	sity (*)	Offset	(ft)
Load Case		Load	Label	Load Type	Left	Right	Left	Right
Beam Weight	D	Addt'l	Self-Wt.	Line Load	0.03	0.03	0.00	32.83
SDL AT	D	12 PSF		Line Load	0.05	0.05	0.00	32.83
Roof Load	SRLr	20 PSF	LLr	Line Load	0.08	0.08	0.00	32.83
Roof Load	SRLr	30 PSF	SL	Line Load	0.12	0.12	0.00	32.83

* point loads = kip, line loads = kip/ft, point moment/torsion = kipft, line torsion = kipft/ft

Load Combinations

Factored Combination 1 = 1.40D + 1.40FFactored Combination 1 = 1.40D + 1.40F
Factored Combination 2 = 1.20D + 1.60L + 0.50SRLr + 1.20F + 1.20T
Factored Combination 3 = 1.20D + 0.50L* + 1.60SRLr
Factored Combination 4 = 1.20D + 1.60SRLr + 0.80WE
Factored Combination 5 = 1.20D + 0.50L* + 0.50SRLr + 1.60WE
Factored Combination 6 = 0.90D + 1.60WE
* Load factor reduced from 1.0 to 0.5 for low live loading (garage, public assembly, < 100 lb/ft2)
(The use of T is not yet implemented)</pre>

SHEAR STIF	RRUPS								
From ft	To ft	Stirrup Grade ksi	Stirrup Size		of Legs Interface Ties	Total Sti Stirrup in^2	rrup Area Interface in^2		Spacing Interface in
0.00	32.83	60.0		0	0	0.00	0.00	0.00	0.00

TORSION PARAMETERS

Seg. Torsion Parameters Aoh in^2 No. Ph in

0.00 1 -0.00

Ach is the area enclosed by the centerline of the outermost closed transverse torsional reinforcement. Ph is the perimeter of the area defined as Ach.

ANALYSIS RESULTS SUMMARY

	Total Unfact			actored Effec	
x (ft)	Moment	(kipft)	Shear	Moment	Torsion
	Total	Sustained	(kip)	(kipft)	(kipft)
0.00	0.0	0.0	0.0	0.0	0.0
0.17	0.0	0.0	-0.1	0.0	0.0
0.17	0.0	0.0	11.1	0.0	0.0
3.42	23.9	14.4	8.9	32.5	0.0
6.67	42.6	25.7	6.7	57.8	0.0
9.92	55.9	33.7	4.4	75.9	0.0
13.17	63.8	38.5	2.2	86.7	0.0
16.42	66.5	40.1	0.0	90.4	0.0
19.83	63.6	38.3	-2.3	86.4	0.0
23.08	55.3	33.4	-4.6	75.2	0.0
26.33	41.8	25.2	-6.8	56.7	0.0
29.58	22.9	13.8	-9.0	31.1	0.0
32.66	0.0	0.0	-11.1	0.0	0.0
32.66	0.0	0.0	0.1	0.0	0.0
32.83	0.0	0.0	0.0	0.0	0.0

SUPPORT REACTIONS (kip)

Unfactored Support Reactions

Engineer: EMF File: HC8-in_Roof_01.con

Company: Civilsmith Engineering, Inc. Wed Oct 08 13:30:11 2008

PAGE 61 OF 87

2

	Left	Right			
eam Weight	4.2	4.2			
SDL BT	0.0	0.0			
opping Wgt	0.0	0.0			
SDL AT	0.8	0.8			
LL Sustain	0.0	0.0			
Live Load Roof Load	0.0	0.0 3.3			
Fluid Wgt	0.0	0.0			
Wind or EQ	0.0	0.0			
train Load	0.0	0.0			
oad Combo.	Left	Right			
ust. Total	5.0	5.0			
Total	8.3	8.3			
actor Max.	11.2	11.2			
ONCRETE STRES	S PEGIT.TG				and a second
+ve = compres		tension)			
Location	x ft	Stress psi	Limit psi	Overstress Notice	3
TRESSES AT TH					-
ritical Comp					
Top of Beam	16.42	844	2450	0 %	
Bottom of Bea		1587	2450	0 %	Longitudinal Tensile Rebar Needed (in^2)
ritical Tensi		0			Required Provided Additional
Top of Beam Bottom of Bea	0.00 am 0.00	0	-444 -444	0 % 0 %	
TRESSES IN SH	RVICE				-
ritical Comp					
Top of Beam	16.42	1786	3000	0 %	i de la construcción de la constru I de la construcción de
Bottom of Bea ritical Tensi		1141	3000	0 %	5 · · · · · · · · · · · · · · · · · · ·
Top of Beam	0.17	-10	-849	* 0 %	Class U member - not cracked 🞿
Bottom of Bea	am 16.42	-172	-849	* 0 %	Class U member - not cracked
TRESSES IN SE ritical Comp		AINED LOADS ON	NLY)		-
TICICAL COMPI	16.42	1027	2250	0 %	
Top of Beam		1307	2250	0 %	
		culation used			
Bottom of Bea	Election cal				
Bottom of Bea Bilinear def		fr =	-530 r	si	
Top of Beam Bottom of Bea Bilinear def odulus of Rup ransfer Strer	pture,		-530 p 2.3 k		

(-ve = deflection down, +ve = camber up) Deflection growth estimated by use of PCI suggested multipliers - see multiplier report Design Code Used: ACI318-05

		Ne	t Deflecti	on			Change in	Deflection	
Location	Net @ *	Net @	Net @	Net DL	Net Total	DL growth	LL	Span/Def	lection
x	Transfer	Erection	Complete	@ Final	@ Final	+ LL **	alone	DL growth	LL
ft	in	in	in	in	in	in	in	+ LL **	alone
0.00	0.000	-0.015	-0.012	-0.008	0.003	0.015	0.012	267	353
0.17	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0	0
3.42	0.140	0.239	0.184	0.103	-0.114	-0.299	-0.217	1305	1799
6.67	0.210	0.365	0.262	0.076	-0.334	-0.596	-0.410	653	951
Engineer:	EMF					Com	oany: Civ	ilsmith Eng	ineering, Ir
File: HC8	-in_Roof_0	1.con			3	-			13:30:11 20

OF O

TECH REPORT I

Summary Report

16.42	0.254	0.439	0.267	-0.110	-0.800	-1.07	-0.690	365	564
19.83	0.251	0.435	0.272	-0.078	-0.732	-1.00	-0.654	388	596
23.08	0.240	0.417	0.278	-0.002	-0.557	-0.835	-0.555	466	702
26.33	0.208	0.360	0.260	0.079	-0.322	-0.582	-0.401	669	972
29.58	0.135	0.230	0.178	0.101	-0.105	-0.283	-0.206	1376	1890
32.66	0.008	0.000	0.000	0.000	0.000	0.000	0.000	. 0	0
32.88	0.000	-0.015	-0.012	-0.008	0.003	0.015	0.012	267	353
32.83	0.000	-0.015	-0.012	-0.000	0.005	0.010			

Span/Deflection Limits: DL growth + LL * = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs

* on temporary supports at transfer ** after completion, including placement of all DL

FLEXURAL DESIGN CHECK

Design Code Used: ACI318-05 Beta Used: for precast beam = 0.800 The maximum value for fps is limited to 0.98 fpu.

x ft	Factored Moment Mu kipft	Design Strength ØMn kipft	Minimum Strength 1.2Mcr kipft	Depth in Compression c in	Net Tensile Strain	Flexure Class	Ø	Notes & Warnings
0.00	0.0	0.0	22.2	0.03	0.6314	Tension	0.75	
0.00	0.0	-2.8	-21.7	0.54	0.0067	Tension	0.75	
. 3.42	32.5	78.9	91.8	1.21		Tension	0.83	
6.67	57.8	117.6	93.3	1.80	0.0074	Tension	0.90	
9.92	75.9	117.7	94.4	1.80	0.0074	Tension	0.90	
13.17	86.7	117.7	95.0	1.80	0.0074	Tension	0.90	
16.42	90.4	117.7	95.2	1.80	0.0074	Tension	0.90	
19.83	86.4	117.7	95.0	1.80	0.0074	Tension	0.90	
23.08	75.2	117.7	94.3	1.80		Tension	0.90	
26.33	56.7	115.6	93.2	1.76	0.0076	Tension	0.90	
29.58	31.1	77.1	91.7	1.21		Tension	0.82	
32.66	0.0	-2.8	-21.7	0.54	0.0067	Tension	0.75	
32.83	0.0	0.0	22.2	0.03	0.6314	Tension	0.75	
Doints of	Maximum and	Minimum Factor	ed Moment					
16.42	90.4	117.7	95.2	1.80	0.0074	Tension	0.90	
0.17	0.0	-2.8	-21.7	0.54	0.0067	Tension	0.75	
	Critical Mon							
16.42	90.4	117.7	95.2	1.80	0.0074	Tension	0.90	
0.17	0.0	-2.8	-21.7	0.54	0.0067	Tension	0.75	

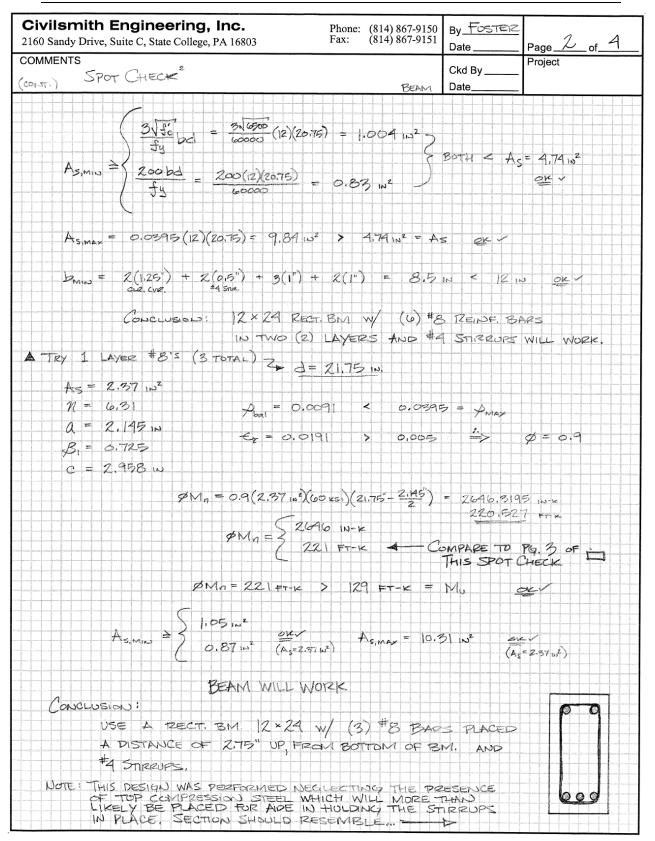
SHEAR AND TORSION DESIGN CHECK

Design Code Used: ACI318-05

Shear and	Torsion Des	sign Forces						
	Applied	Prestress	Concrete	Stirrup *	Shear	Applied	Threshold	Notes &
	Shear	Component	Strength	Strength	Strength	Torsion	Torsion	Warnings
x	Vu	Vp	ØVc	ØVs	ØVn	Tu	ØTcr/4	
ft	kip	kip	kip	kip	kip	kipft	kipft	
0.00	0.0	0.0	-8.1	0.0	-8.1	0.0	5.8	
0.17	-0.1	0.0	-15.3	0.0	-15.3	0.0	6.4	
0.17	10.9	0.0	15.3	0.0	15.3	0.0	6.4	
3.42	8.9	0.0	17.5	0.0	17.5	0.0	11.2	
6.67	6.7	0.0	8.9	0.0	8.9	0.0	11.2	
9.92	4.4	0.0	8.1	0.0	8.1	0.0	11.3	
13.17	2.2	0.0	8.1	0.0	8.1	0.0	11.3	
16.42	0.0	0.0	8.1	0.0	8.1	0.0	11.3	
19.83	-2.3	0.0	-8.1	0.0	-8.1	0.0	11.3	
23.08	-4.6	0.0	-8.1	0.0	-8.1	0.0	11.3	
26.33	-6.8	0.0	-9.1	0.0	-9.1	0.0	11.2	
29.58	-9.0	0.0	-18.3	0.0	-18.3	0.0	11.1	
32.66	-10.9	0.0	-15.3	0.0	-15.3	0.0	6.4	
Engineer:	EMF				Co	ompany: Civi		neering, Inc.
	-in_Roof_01	.con		4			Wed Oct 08	13:30:11 2008

.

TECH REPORT I


				Summary Reg	port			1 -	
Licensed t Project: A	:0: 40540212	ersion 4.46c, 211, Civilsmi earch Laborat Plank	th Engineer.	lack Mint S ing - OK	Software, In	1C		10	of IC
32.66	0.1	0.0	15.3	0.0	15.3	0.0	6.4		
32.83	0.0	0.0	8.1	0.0	8.1	0.0	5.8		
	e Steel (Sti	based on requ rrup) Design Shear Steel Torsion*	-		Spacing Required	Long. Torsi Total	on Steel, Al Allowable	Notes & Warnings	
x	(Av+2At)/s	At/s	Av+2At	S	S	Required		narnings	
ft	in^2/ft	in^2/ft	in^2	in	in	in^2	in^2		
0.00	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
0.17	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
0.17	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
3.42	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
6.67	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
9.92	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
13.17	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
16.42	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
19.83	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
23.08	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
26.33	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
29.58	0.00	0.00	N/A	N/A		0.00	0.00		
32.66	0.00	0.00	N/A	N/A		0.00	0.00		
32.66	0.00	0.00	N/A	N/A	6.00	0.00	0.00		
32.83	0.00	0.00	N/A	N/A	6.00	0.00	0.00		

* Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** Allowable reduction in the additional longitudinal steel in the compression portion of the section.

5

	-	ite C, State Colleg	e, PA 16803		Fax: (81	4) 867-9151	Date	Page of Project
	SPOT	CHECK N	12RB24	BEAM			Ckd By Date	
FLEXI ZNO F	URAL-	DESIGN CHE RECTANGULA	z Bram ((12 × 1			1	= 9'-10" 5. = 9'-6"
LOADS	5 ->				DIVIDE EV 1000			
De	ADI	12" HC SLAB 2" TOPPING 12" HC SOUD MISC.	= 72.5 PSF = 25 PSF = 77.5 PSF = 12 PSF	X X X X	2.23' = A.23' = 2.0' = A.23' =	2.337 0.856 0.155 0.911	киF киP киP киF	
		SELF WT.	= 12×24/144	< 150/1000		0.300 3.758	KF	D = 3.8 KIF
		125 psf x 34	1.4-7/1600 5	1.2 1.4 7 4	= 4,3	elf /		
		$\omega = 1.2 t$	> + 1.6L		11,4 KLF			
ASSUM		. f' = 6500 . fy = 60000	PS1 3.1 DP31 4.4	JO COM F9 ST	PRESSION R IPRESSION R		5, d = 20	0;75 ⁴
					5 = (6)(0			Az= 4.74 1
					29000 KS			n = 6.31
24" (h)			$a = \frac{A_s}{0.85}$	54 566	4.74 IN2 0.85(6.5	(60 KSI))(12 IN)	= 4.28°	1 . ~r a= 2.90'
00	000	Tizy (6) #8	Azal = "	As bd	- 4:74 (12)(26:75)	5 0.019	1	$C = \frac{\alpha}{\beta_1} = 4^{11}$
	2" (b)				(5'2= 6.5			
	Рмах	= 0,85 B, -	Sy Eutey	= 0,	85 (0:725)	60 100	03+ (60)	= 0.0395
		Pm	AX = 0.03	995	> Poat		19	
		÷ €2=	€ <u></u> (d-c)		4 (20.7			
	(*) (0.013		0.005			9.1
	<i>Y</i> ™In	= 0.9(4,70	1 (d - 72) 1 (60 ks))(20.7	5" - 2.90%) = 450	08.886	N+K
	Mu	$\frac{\omega l^2}{8} =$	<u>(11.4)(9.5</u> 8	- /) ²	28,60	6 K-FT	4	$M_{n} = 380.7 \text{ m}_{0}$
1977 - Andrew C. A. Andrew C. Standard M. Andrew C. S. Standard M. Martin and S. Sandard M. Martin and S. S. Standard M. Martin and Standard M. Martin and Standard M. Martin and Standard M. Martin and St					LC.	OMPARE FTHIS S	TO PG. 3 POT CHECK	

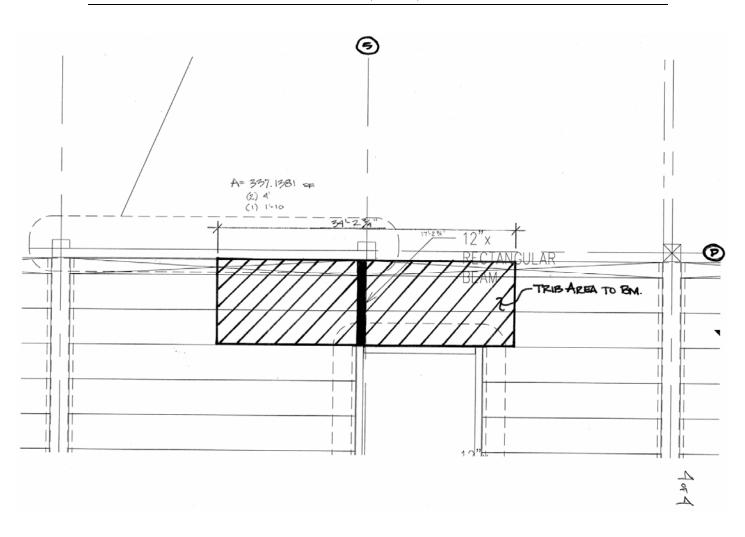
PAGE 65 OF 87

PAGE 66 OF 87

3 of 4

TECH REPORT I

Flexural Design Check


Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 9'-10" Non-Prestressed 12RB24

FLEXURAL DESIGN CHECK

Design Code Used: ACI318-05 Beta Used: for precast beam = 0.725 The maximum value for fps is limited to 0.98 fpu.

x ft	Factored Moment Mu kipft	Design Strength ØMn kipft	Minimum Strength 1.2Mcr kipft	Depth in Compression c in	Net Tensile Strain	Flexure Class	Ø	Notes & Warnings
0.00	0.0	220.4	72.6	2.63	0 0218	Tension	0.90	
0.17	-0.2	-88.4	-69.8	1.88		Tension	0.90	
0.26	5.1	220.4	72.6	2.63		Tension	0.90	
0.50	17.7	220.4	72.6	2.63		Tension	0.90	
0.74	29.6	220.4	72.6	2.63		Tension	0.90	
1.02	43.1	220.4	72.6	2.63		Tension	0.90	
1.26	53.6	220.4	72.6	2.63	0.0218	Tension	0.90	
1.50	63.4	220.4	72.6	2.63		Tension	0.90	
1.74	72.6	220.4	72.6	2.63	0.0218	Tension	0.90	
1.97	81.1	220.4	72.6	2.63	0.0218	Tension	0.90	
2.26	90.4	220.4	72.6	2.63	0.0218	Tension	0.90	
2.50	97.5	220.4	72.6	2.63	0.0218	Tension	0.90	
2.73	103.9	220.4	72.6	2.63	0.0218	Tension	0.90	
2.97	109.6	220.4	72.6	2.63		Tension	0.90	
3.21	114.7	220.4	72.6	2.63	0.0218	Tension	0.90	
3.45	119.1	220.4	72.6	2.63	0.0218	Tension	0.90	
3.73	123.6	220.4	72.6	2.63		Tension	0.90	
3.97	126.5	220.4	72.6	2.63		Tension	0.90	
4.20	128.9	220.4	72.6	2.63		Tension	0.90	
4.44	130.5	220.4	72.6	2.63		Tension	0.90	
4.68	131.5	220.4	72.6	2.63	0.0218	Tension	0.90	
4.92	131.8	220.4	72.6	2.63		Tension	0.90	
5.20	131.3	220.4	72.6	2.63		Tension	0.90	
5.44	130.2	220.4	72.6	2.63		Tension	0.90	
5.68	128.4	220.4	72.6	2.63		Tension	0.90	
5.91	126.0	220.4	72.6	2.63		Tension	0.90	
6.15	122.9	220.4	72.6	2.63		Tension	0.90	
6.44	118.3	220.4	72.6	2.63		Tension	0.90	
6.67	113.8	220.4	72.6	2.63		Tension	0.90	
6.91	108.5	220.4	72.6	2.63		Tension	0.90	
7.15	102.7	220.4	72.6	2.63		Tension	0.90	
7.38	96.1	220.4	72.6	2.63		Tension	0.90	
7.62	88.9	220.4	72.6	2.63		Tension	0.90	
7.91	79.4	220.4	72.6	2.63		Tension	0.90	
8.14	70.8	220.4	72.6	2.63		Tension	0.90	
8.38 8.62	61.5	220.4	72.6	2.63		Tension	0.90	
8.86	51.5 40.9	220.4	72.6 72.6	2.63		Tension Tension	0.90	
		220.4		2.63			0.90	
9.14 9.38	27.3 15.2	220.4 220.4	72.6 72.6	2.63		Tension Tension	0.90 0.90	
9.62	2.5	220.4	72.6	2.63		Tension	0.90	
9.66	-0.2	-88.4	-69.8	1.88		Tension	0.90	
9.83	0.0	220.4	72.6	2.63		Tension	0.90	
9.05	0.0	220.4	/2.0	2.03	0.0218	Tension	0.90	
Points of	Maximum and	Minimum Factor	ed Moment					
4.92	131.8	220.4	72.6	2.63	0.0218	Tension	0.90	
0.17	-0.2	-88.4	-69.8	1.88		Tension	0.90	
	Critical Mome							
4.92	131.8	220.4	72.6	2.63	0.0218	Tension	0.90	
0.17	-0.2	-88.4	-69.8	1.88	0.0319	Tension	0.90	

1

TECH REPORT I

Designs

(Inverted-Tee Beams)

Summary Report Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 36IT28 SUMMARY REPORT Design Code Used: ACI318-05 CONCRETE MATERIAL PROPERTIES Precast Beam Wt 150 lb/ft^3 Concrete Density f'c = Compressive Strength 6.5 ksi Modulus of Elasticity ksi E¢ 4888 Strength at Transfer f'ci Modulus of Elast. at Transfer Eci f'ci = 4 0 ksi 3834 ksi = Cement Content = 691 lb/yd^3 Construction Schedule * = 0.75 days = 40 davs Air Content 5.00 % 1.97 in Age at Transfer Age at Erection = Slump = Aggregate Mix = 0.40 (ratio fine to total aggregate) Age at Topping Placement = 50 days Aggregate Size = 0.00 Curing Method = Moist Age Topping is Composite = 53 * for loss calculations only) 0.00 in 53 days Humidity 70 % Basic Shrinkage Strain = 780E-6 BEAM LAYOUT Offset Section Identification Topping Parameters Segment/Length Y t1 То z Folder Section b1 t2 h2 From No ft ft in in in in in in 1 0.00 32.83 0.00 0.00 Inverted-Tee 36IT28_12" HC Total Beam Length = 32.83 ft, Left Support @ 0.17 ft, Right Support @ 32.66 ft, Span = 32.49 ft PRECAST SECTION PROPERTIES (NON-COMPOSITE) * width V/S height bw Seg. A No. in² I vb Sb St in[^]4 in³ in^3 in in in in in 862.5 1 53360 12.66 3478 6.74 24.00 36.00 28.00 4215 * These properties do not include the transformed area of any reinforcing or prestressing steel. See the Transformed Section Properties text report for properties that include the area of steel. LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups ID Qty То * Offset Offset Reference ** Grade Bar Size * Area From × ksi in^2 ft ft in 0.00 H 32.83 H 1 4 60.0 #8 3.160 25.75 bottom of the beam 0.880 0.00 H 32.83 H 2.13 bottom of the beam 2 2 60.0 #6 3 2 60.0 #8 1.580 0.00 H 32.83 H 17.00 bottom of the beam notes: * A 'C' or 'H' suffix indicates "epoxy coating" and "hooked end" respectively. ** Offsets are measured up from the bottom or down from the top Reinforcing Steel Development Lengths (in) Location Spacing Density Bar Size Left End of Rebar Right End of Rebar Tension Compression Compression ID Factor Factor Factor Factor Tension 1 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 2 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 1.00 1.00 1.00 1.00 note: Product of location and coating factors not taken greater than 1.70. PRESTRESSING STEEL TENDONS Prestressing Strand Details End Offset & Type * Tendon Jacking Force Offsets Material y in Left Right Area Ρi %fpu ID Qty Section ft in^2 kip ft ft Company: Civilsmith Engineering, Inc. Engineer: EMF 1 Tue Oct 07 15:26:41 2008 File: 2nd Floor_36IT28.con

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 36IT28 1 15 fpu=270 ksi SWS#1/2"SP 0.00 2.00 0.00 B 0.00 B 2.505 473.4 0.70 Es= 28000.0 ksi 32.83 0.00 1.503 0.70 fpu=270 ksi SWS#1/2"SP 4.00 0.00 B 0.00 B 284.1 2 9 Es= 28000.0 ksi 32.83 4.00 notes: * Strand End Types: B - Fully Bonded, D - Debonded, C - Cut, A - Anchored (fully developed) Prestressing steel is low relaxation strand. Calculated Losses: Initial = 7.8 %, Final = 13.9 % 757.5 kip, Maximum Total Prestress Forces: Pj(jacking) = 698.6 kip, 651.9 kip@x = 16.42 ft Pi(transfer) = Pe(effective) = Prestressing Strand Transfer and Development Lengths fse Transfer Development Debond Length fps ID Diameter End psi psi in in in ft 0.00 151740 260550 25.26 79.65 1 LEFT 0.50 0.50 RIGHT 0.00 151740 260550 25.26 79.65 1 78.32 25.48 258791 2 0.50 LEFT 0.00 153090 153090 258791 25.48 78.32 2 RIGHT 0.00 0.50 BEAM AND TOPPING SELF-WEIGHT Segment/Length Linear Weight Topping то Beam From NO. ft ft kip/ft kip/ft 1 0.00 32.83 0.90 EXTERNALLY APPLIED LOADS Load Intensity (*) Offset (ft) Right Left Right Load Type Left Load Label Load Case 0.00 32.83 Line Load 2.55 SDL BT 12" HC Slabe D 2.55 0.78 0.78 0.00 32.83 2" Topping D Line Load SDL AT SDL AT D 12 PSF Line Load 0.42 0.42 0.00 32.83 0.00 32.83 4.38 Live Load L 125 PSF Line Load 4.38 16.42 Live Load L 5 kip Point Load 5.00 * point loads = kip, line loads = kip/ft, point moment/torsion = kipft, line torsion = kipft/ft Load Combinations Factored Combination 1 = 1.40D + 1.40F Factored Combination 2 = 1.20D + 1.60L + 0.50SRLr + 1.20F + 1.20T Factored Combination 3 = 1.20D + 0.50L* + 1.60SRLr Factored Combination 4 = 1.20D + 1.60SRLr + 0.80WE Factored Combination $5 = 1.20D + 0.50L^* + 0.50SRLr + 1.60WE$ Factored Combination 6 = 0.90D + 1.60WE Factored Combination 6 = 0.90D + 1.60WE * Load factor reduced from 1.0 to 0.5 for low live loading (garage, public assembly, < 100 lb/ft2) (The use of T is not yet implemented) SHEAR STIRRUPS Stirrup Spacing Number of Legs Total Stirrup Area Stirrup Stirrup Stirrup Interface Stirrup Interface Stirrup Interface From То Grade Size in^2 in in in^2 ft ksi in Beam Ties ft 2 0.00 32.83 60.0 #4 0 0.40 0.00 6.00 0.00 TORSION PARAMETERS Seg. Torsion Parameters Ph No. Aoh in^2 in 1 679.50 116.00 Ach is the area enclosed by the centerline of the outermost closed transverse torsional reinforcement. Company: Civilsmith Engineering, Inc. Tue Oct 07 15:26:41 2008 Engineer: EMF 2 File: 2nd Floor_36IT28.con

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 36IT28

Ph is the perimeter of the area defined as Aoh.

ANALYSIS RESULTS SUMMARY

	Total Unfact	cored Effects	Total 1	Factored Effec	cts	
x (ft)	Moment	(kipft)	Shear	Moment	Torsion	
	Total	Sustained	(kip)	(kipft)	(kipft)	
0.00	0.0	0.0	0.0	0.0	0.0	
0.17	-0.1	0.0	-2.1	-0.2	0.0	
0.17	-0.1	0.0	208.2	-0.2	0.0	
3.29	420.7	212.5	169.0	588.1	0.0	
6.67	777.6	391.9	126.5	1087.4	0.0	
9.92	1023.7	514.4	85.7	1432.1	0.0	
13.17	1174.6	587.8	44.8	1644.2	0.0	
16.42	1230.3	612.3	4.0	1723.5	0.0	
16.42	1230.3	612.3	4.0	1723.5	0.0	
19.80	1170.4	585.8	-46.5	1638.2	0.0	
23.05	1015.7	510.4	-87.3	1420.9	0.0	
26.29	765.8	386.0	-128.2	1070.8	0.0	
29.67	404.9	204.6	-170.6	566.0	0.0	
32.66	-0.1	0.0	-208.2	-0.2	0.0	
32.66	-0.1	0.0	2.1	-0.2	0.0	
32.83	0.0	0.0	0.0	0.0	0.0	

SUPPORT REACTIONS (kip)

Un	factored Sup	port Reactions
Load Case	Left	Right
Beam Weight	14.7	14.7
SDL BT	41.8	41.8
Topping Wgt	0.0	0.0
SDL AT	19.6	19.6
LL Sustain	0.0	0.0
Live Load	74.3	74.3
Roof Load	0.0	0.0
Fluid Wgt	0.0	0.0
VWind or EQ	0.0	0.0
Strain Load	0.0	0.0
Load Combo.	Left	Right
Sust. Total	76.2	76.2
Total	150.5	150.5
Factor Max.	210.3	210.3

CONCRETE STRESS RESULTS (+ve = compression, -ve = tension)

Location	x ft	Stress psi	Limit psi	Overstres Notice		
		-	-			
STRESSES AT TRANS	FER					
critical Compress	ion					
Top of Beam	0.00	-1	2800		00	
Bottom of Beam	30.71	2182	2800	0	90	
						Longitudinal Tensile Rebar Needed (in^2)
Critical Tension						Required Provided Additional
Top of Beam	30.71	-986	-474	108	Ŷ	3.0 3.2 0.0
Bottom of Beam	0.00	2	-474	0	\$	
TRESSES IN SERVI	CE					
Critical Compress	ion					
Top of Beam	16.42	2981	3900		ø	
Bottom of Beam	2.12	1256	3900	0	olo	
Critical Tension						
Top of Beam	0.17	-80	-967			Class U member - not cracked
Bottom of Beam	16.42	-1174	-967	* 21	olo	Class C member - check cracking and cover
STRESSES IN SERVI	CE (SUSTA	INED LOADS OF	ILY)			
nginoor, EME						Company: Civilsmith Engineering, In
ngineer: EMF ile: 2nd Floor 34		_		3		Tue Oct 07 15:26:41 2

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 36IT28 Critical Compression

Top of Beam 16.42	970	2925	0 %	
Bottom of Beam 2.12	1619	2925	0 8	
* Bilinear deflection calcul	ation used.			
Modulus of Rupture,	fr =	-605 psi		
Transfer Strength Required,	f'ci =	3.1 ksi		
Transfer Strength Specified,	f'ci =	4.0 ksi		

DISTRIBUTION OF FLEXURAL STEEL & CRACKING

	Bottom	Top of		
	of Beam	Beam		
Maximum Cr	ack Width	Estimate		
Cracked?	Yes	No		
w =	0.006	0.000	in	- Estimated maximum crack width *
x = '	16.42	0.00	ft	- Location of maximum crack width from left end of beam
C =	15.18	0.00	in	- Concrete depth in compression
Ms =	1230.3	0.0	kipft	- External service moment (DL + LL)
Pdc =	-632.9	0.0	kip	- Decompression force at cracked centroid
Mint=	321.3	0.0	kipft	- Internal moment about cracked centroid
Steel Type	mixed	rebar		- Type of steel in tension
Sui	i&Dilger	-		- Equation used **
k1 =	2.1	0.0		- (x 10 ⁻⁵) Coefficient used for equation
fs =	14.2	0.0		- Stress in steel nearest to tension face (after decompression)
h1 =	-	0.00		- Distance from the neutral axis to the extreme rebar
h2 =	-	0.00	in	- Distance from the neutral axis to the edge of concrete in tension
dc =	2.00		in	- Concrete cover to center of steel closest to tension face
A =	- 1	0.0	in^2	- Area of concrete in tension around each bar/strand
At =	461.5	-	in^2	- Area of concrete in tension
Ast =	4.9	-	in^2	- Area of steel in tension
Maximum FI	lexural St	eel Spacing		
CC =	1.75	0.00	in	- Clear concrete cover to steel closest to tension face
S =	33.84	0.00	in	- Maximum centre-to-centre spacing of steel closest to tension face
fc =	-3472	-235	psi	- Maximum concrete compressive stress
limit=	-3900	-3900	psi	- Allowable concrete compressive stress

Recommended Crack W	idth (in) and Critica Exposur	1	z (lb/in) Va Prestres Concre	sed	Reinforced Concrete		
	W	z	W	z	W	z	
Exterior Exposure Interior Exposure	0.007	80000 105000	0.008	90000 115000	0.013 0.016	145000 175000	

* Note: actual crack widths can vary by as much as 50% from this predicted value. Control of cracking is accomplished by proper steel detailing as specified in the design code. ** Note: Gergely & Lutz equation: w = kl x fs x h2 / h1 x CubicRoot(dc * A) Suri & Dilger equation: w = kl x fs x dc x Sqrt(At / Ast)

NET DEFLECTION ESTIMATE AT ALL STAGES

(-ve = deflection down, +ve = camber up) Deflection growth estimated by use of PCI suggested multipliers - see multiplier report Design Code Used: ACI318-05

		Ne	t Deflecti	on			Change in	Deflection		
Location	Net @ *	Net @	Net @	Net DL	Net Total	DL growth	LL	Span/Def1	lection	
x	Transfer	Erection	Complete	@ Final	@ Final	+ LL **	alone	DL growth	LL	
ft	in	in	in	in	in	in	in	+ LL **	alone	
0.00	0.000	-0.006	-0.005	-0.005	0.005	0.009	0.009	449	449	
0.17	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0	0	
3.29	0.182	0.164	0.132	0.100	-0.064	-0.196	-0.164	1990	2371	
6.67	0.326	0.292	0.228	0.160	-0.169	-0.396	-0.328	983	1188	
9.92	0.422	0.372	0.284	0.185	-0.275	-0.559	-0.460	697	847	
13.17	0.479	0.418	0.315	0.195	-0.360	-0.675	-0.555	577	703	
16.42	0.498	0.432	0.324	0.197	-0.393	-0.717	-0.590	543	660	
16.42	0.498	0.432	0.324	0.197	-0.393	-0.717	-0.590	543	660	
Engineer:	EMF					Comp	any: Civ	ilsmith Eng	ineering,	Inc.
File: 2nd		T28.con			4	-	-	Tue Oct 07	15:26:41	2008

PAGE 73 OF 87

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 36IT28

19.80	0.477	0.417	0.314	0.194	-0.358	-0.671	-0.552	580	706
23.05	0.419	0.370	0.283	0.184	-0.271	-0.553	-0.455	704	856
26.29	0.321	0.288	0.225	0.158	-0.164	-0.389	-0.322	1001	1210
29.67	0.176	0.158	0.127	0.097	-0.061	-0.188	-0.158	2075	2472
32.66 32.83	0.010	0.000	0.000	0.000	0.000	0.000	0.000	2075 0 449	2472 0 449

Span/Deflection Limits: DL growth + LL * = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs

* on temporary supports at transfer ** after completion, including placement of all DL

FLEXURAL DESIGN CHECK

Design Code Used: ACI318-05 Beta Used: for precast beam = 0.725 The maximum value for fps is limited to 0.98 fpu.

x ft	Factored Moment Mu kipft	Design Strength ØMn kipft	Minimum Strength 1.2Mcr kipft	Depth in Compression c in	Net Tensile Strain	Flexure Class	Ø	Notes & Warnings
0.00	0.0	148.8	257.5	1.96	0.0368	Tension	0.75	
0.17	-0.2	-398.5	-192.6	2.20	0.0322	Tension	0.75	
3.29	588.1	1263.7	1169.1	6.96	0.0082	Tension	0.82	
6.67	1087.4	1816.2	1192.9	9.60	0.0051	Tension	0.90	
9.92	1432.1	1818.1	1209.1	9.64	0.0051	Tension	0.90	
13.17	1644.2	1818.8	1218.8	9.64	0.0051	Tension	0.90	
16.42	1723.5	1819.0	1222.0	9.64	0.0051	Tension	0.90	
16.42	1723.5	1819.0	1222.0	9.64	0.0051	Tension	0.90	
19.80	1638.2	1818.8	1218.5	9.64	0.0051	Tension	0.90	
23.05	1420.9	1818.0	1208.6	9.64	0.0051	Tension	0.90	
26.29	1070.8	1804.8	1192.1	9.56	0.0052	Tension	0.90	
29.67	566.0	1242.9	1168.1	6.88	0.0083	Tension	0.82	
32.66	-0.2	-398.5	-192.6	2.20	0.0322	Tension	0.75	
32.83	0.0	148.8	257.5	1.96	0.0368	Tension	0.75	
Points of	Maximum and	Minimum Facto	red Moment					
16.42	1723.5	1819.0	1222.0	9.64	0.0051	Tension	0.90	
0.17	-0.2	-398.5	-192.6	2.20	0.0322	Tension	0.75	
Points of	Critical Mom	ent Design						
16.42	1723.5	1819.0	1222.0	9.64		Tension	0.90	
0.17	-0.2	-398.5	-192.6	2.20	0.0322	Tension	0.75	

SHEAR AND TORSION DESIGN CHECK

Design Code Used: ACI318-05

incur and	Applied Shear	sign Forces Prestress Component	Concrete Strength	Stirrup * Strength	Shear Strength	Applied Torsion	Threshold Torsion	Notes & Warnings
x	Vu	Vp	ØVc	ØVs	ØVn	Tu	ØTcr/4	
ft	kip	kip	kip	kip	kip	kipft	kipft	
0.00	0.0	0.0	-63.8	-77.6	-141.4	0.0	29.3	
0.17	-2.1	0.0	-122.5	-68.5	-191.0	0.0	31.5	
0.17	193.5	0.0	122.5	68.5	191.0	0.0	31.5	2
3.29	169.0	0.0	221.1	75.9	297.0	0.0	50.1	
6.67	126.5	0.0	105.9	75.8	181.7	0.0	50.1	
9.92	85.7	0.0	73.4	75.8	149.2	0.0	50.1	
13.17	44.8	0.0	73.4	75.8	149.2	0.0	50.1	
16.42	4.0	0.0	73.4	75.8	149.2	0.0	50.1	
16.42	4.0	0.0	73.4	75.8	149.2	0.0	50.1	
19.80	-46.5	0.0	-73.4	-75.8	-149.2	0.0	50.1	
23.05	-87.3	0.0	-73.4	-75.8	-149.2	0.0	50.1	
26.29	-128.2	0.0	-108.2	-75.8	-184.1	0.0	50.1	
29.67	-170.6	0.0	-221.0	-75.9	-296.9	0.0	50.1	
32.66	-193.5	0.0	-122.5	-68.5	-191.0	0.0	31.5	2
32.66	2.1	0.0	122.5	68.5	191.0	0.0	31.5	
Engineer:	EME				Co	ompany: Civ	ilsmith Engi	neering, I
	Floor 36IT	28 con		5			Tue Oct 07	

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 36IT28

32.83 0.0 0.0 63.8 77.	6 141.4	0.0	29.3
------------------------	---------	-----	------

Notes & Warnings 2 - Warning: The applied factored shear, Vu, is greater than the shear strength, ØVn. * Stirrup resistance based on stirrup area provided.

Transvers x ft	e Steel (Stin Required Sh Total (Av+2At)/s in^2/ft		for Shear Stirrup Provided Av+2At in^2	Stirrup Provided s in	Spacing Required s in	Long. Torsi Total Required in^2	on Steel, Al Allowable Reduction** in^2	Notes & Warnings
0.00	0.00	0.00	0.40	6.00	21.00	0.00	0.00	
0.17	0.00	0.00	0.40	6.00	21.00	0.00	0.00	
0.17	0.83	0.00	0.40	6.00	5.79	0.00	0.00	1
3.29	0.07	0.00	0.40	6.00	21.00	0.00	0.00	2
6.67	0.22	0.00	0.40	6.00	21.00	0.00	0.00	
9.92	0.13	0.00	0.40	6.00	21.00	0.00	0.00	
13.17	0.11	0.00	0.40	6.00	21.00	0.00	0.00	2
16.42	0.00	0.00	0.40	6.00	21.00	0.00	0.00	
16.42	0.00	0.00	0.40	6.00	21.00	0.00	0.00	
19.80	0.11	0.00	0.40	6.00	21.00	0.00	0.00	2
23.05	0.15	0.00	0.40	6.00	21.00	0.00	0.00	
26.29	0.21	0.00	0.40	6.00	21.00	0.00	0.00	
29.67	0.07	0.00	0.40	6.00	21.00	0.00	0.00	2
32.66	0.83	0.00	0.40	6.00	5.79	0.00	0.00	1
32.66	0.00	0.00	0.40	6.00	21.00	0.00	0.00	
32.83	0.00	0.00	0.40	6.00	21.00	0.00	0.00	

Notes & Warnings

Notes & Warnings 1 - Warning: The shear stirrup spacing is too wide. 2 - Note: Amount of shear steel required represents minimum requirements. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** Allowable reduction in the additional longitudinal steel in the compression portion of the section.

Engineer: EMF File: 2nd Floor_36IT28.con Company: Civilsmith Engineering, Inc. Tue Oct 07 15:26:41 2008

6

.

TECH REPORT I

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: <u>3rd Floor 36IT20</u>

SUMMARY REPORT

Design Code Used: ACI318-05

	Precas	st Beam	
Concrete Density	Wt =	150 lb,	ft^3
Compressive Strength	f'c =	6.0 ks:	
Adulus of Elasticity	Ec =	4696 ks:	
Strength at Transfer	f'ci =	4.0 ks:	
Modulus of Elast. at Transfe	r Eci =	3834 ks:	
Cement Content = 691 lb/	vd^3		Construction Schedule *
ir Content = 5.00 %			Age at Transfer = 0.75 days
lump = 1.97 in			Age at Erection = 40 days
aggregate Mix = 0.40 (ra	tio fine to f	total aggreg	te) Age at Topping Placement = 50 days
ggregate Size = 0.00 in		55 5	Age Topping is Composite = 53 days
Curing Method = Moist			* for loss calculations only)
Humidity = 70 %			

BEAM LAYOUT

Seg	ment/Leng	th	Offse	et	Section Ident	ification		Topping	Parameters	3
No	From ft	To ft	Z in	Y in	Folder	Section	t1 in	b1 in	t2 in	b2 in
1	0.00	32.83	0.00	0.00	Inverted-Tee	36IT20_10" HC		· · ·		

Total Beam Length = 32.83 ft, Left Support @ 0.17 ft, Right Support @ 32.66 ft, Span = 32.49 ft

PRECA	AST SECTION	PROPERTIES	(NON-COME	POSITE) *				-		
Seg.	A	I	yb	Sb	St	v/s	bw	width	height	
No.	in^2	in^4	in	in^3	in^3	in	in	in	in	
:					Carlo Carlo de Carlo			·	<u> </u>	
1	598.5	19399	9.00	2155	1764	5.34	24.00	36.00	20.00	

* These properties do not include the transformed area of any reinforcing or prestressing steel. See the Transformed Section Properties text report for properties that include the area of steel.

LONGITUDINAL REINFORCING STEEL

	nfo Qty	rcing Steel Grade ksi	Groups Bar Size *	Area in^2	From * ft	To * ft	Offset in	Offset Reference **
1	4	60.0	#8	3.160	0.00 H	32.83 H	17.75	bottom of the beam
2	2	60.0	#6	0.880	0.00 H	32.83 H	2.13	bottom of the beam
3	2	60.0	#8	1.580	0.00 H	32.83 H	12.00	bottom of the beam
4	2	60.0	#8	1.580	0.00 H	32.83 H	15.00	bottom of the beam

notes: * A 'C' or 'H' suffix indicates "epoxy coating" and "hooked end" respectively. ** Offsets are measured up from the bottom or down from the top

	nforcing Location Factor			Lengths (in Bar Size Factor		of Rebar Compression	Right End Tension	of Rebar Compression
1	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
2	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
3	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
4	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00

note: Product of location and coating factors not taken greater than 1.70.

PRESTRESSING STEEL TENDONS

Prestressing Strand Details	Offsets	End Offset &	Type *	Tendon	Jacking Force	
Engineer: EMF File: 3rd Floor_36IT20.con	9 (1999)	1	Compar		n Engineering, st 07 15:25:51	

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 3rd Floor 36IT20

ID Qty Mater	ial Section	x ft	y in	Left ft	Right ft	Area in^2	Pj kip	%fpu
1 12 fpu=270	ksi SWS#1/2"SP	0.00	2.00	0.00 B	0.00 B	2.004	378.8	0.70
Es= 2800	00.0 ksi	32.83	2.00					
2 12 fpu=270	ksi SWS#1/2"SP	0.00	4.00	0.00 B	0.00 B	2.004	378.8	0.70
Es= 2800	00.0 ksi	32.83	4.00					
3 8 fpu=270	ksi SWS#1/2"SP	0.00	6.00	0.00 B	0.00 B	1.336	252.5	0.70
Es= 2800	00.0 ksi	32.83	6.00					

notes: * Strand End Types: B - Fully Bonded, D - Debonded, C - Cut, A - Anchored (fully developed)
Prestressing steel is low relaxation strand.
Calculated Losses: Initial = 10.5 %, Final = 16.7 %
Maximum Total Prestress Forces: Pj(jacking) = 1010.0 kip,

ess	Forces: Pj(jacking)	=	1010.0	kip,			
	Pi(transfer)	=	903.8	kip,			
	Pe(effective)	-	841.3	kip @ x	=	16.42	ft

Prestressing Strand Transfer and Development Lengths

ID	Diameter in	End	Debond Length ft	fse psi	fps psi	Transfer in	Development in
1	0.50	LEFT	0.00	141839	234458	23.61	69.91
1	0.50	RIGHT	0.00	141839	234458	23.61	69.91
2	0.50	LEFT	0.00	142992	213762	23.80	59.18
2	0.50	RIGHT	0.00	142992	213762	23.80	59.18
3	0.50	LEFT	0.00	145468	194305	24.21	48.63
3	0.50	RIGHT	0.00	145468	194305	24.21	48.63

BEAM AND TOPPING SELF-WEIGHT

Segme	ent/Leng	th	Linear	Weight
No.	From	To	Beam	Topping
	ft	ft	kip/ft	kip/ft

1 0.00 32.83 0.62

EXTERNALLY	APPLI	ED LOADS					
				Load Intens	sity (*)	Offset	(ft)
Load Case		Load Label	Load Type	Left	Right	Left	Right
SDL BT	D	10" HC Slabs	Line Load	2.48	2.48	0.00	32.83
SDL AT	D	2" Topping	Line Load	0.78	0.78	0.00	32.83
SDL AT	D	12 PSF	Line Load	0.42	0.42	0.00	32.83
Live Load	L	80 PSF	Line Load	3.08	3.08	0.00	32.83

* point loads = kip, line loads = kip/ft, point moment/torsion = kipft, line torsion = kipft/ft

Load Combinations Factored Combination 1 = 1.40D + 1.40F Factored Combination 2 = 1.20D + 1.60L + 0.50SRLr + 1.20F + 1.20T Factored Combination 3 = 1.20D + 0.50L* + 1.60SRLr Factored Combination 4 = 1.20D + 1.60SRLr + 0.80WE Factored Combination 5 = 1.20D + 0.50L* + 0.50SRLr + 1.60WE Factored Combination 6 = 0.90D + 1.60WE * Load factor reduced from 1.0 to 0.5 for low live loading (garage, public assembly, < 100 lb/ft2) (The use of T is not yet implemented)

```
SHEAR STIRRUPS
                                                                           Stirrup Spacing
                 Stirrup Stirrup
                                   Number of Legs
                                                     Total Stirrup Area
                                Stirrup Interface Stirrup Interface
in Beam Ties in^2 in^2
                                                                         Stirrup Interface
  From
           то
                 Grade
                        Size
           ft
                                                                           in
                                                                                    in
   ft
                  ksi
                                       2
                                               0 -
                                                        0.22
                    60.0
                                                                    0.00
                                                                             6.00
                                                                                    0.00
    0.00
           32.83
                             #3
TORSION PARAMETERS
Seg. Torsion Parameters
No.
       Aoh
                   Ph
                                                              Company: Civilsmith Engineering, Inc.
Engineer: EMF
File: 3rd Floor_36IT20.con
                                                2
                                                                          Tue Oct 07 15:25:51 2008
                                      PAGE 77 OF 87
```

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 3rd Floor 36IT20

in^2 in

1 439.50 100.00

Ach is the area enclosed by the centerline of the outermost closed transverse torsional reinforcement. Ph is the perimeter of the area defined as Ach.

ANALYSIS RESULTS SUMMARY

	Total Unfact	ored Effects	Total Factored Effects						
x (ft)	Moment	(kipft)	Shear	Moment	Torsion				
	Total	Sustained	(kip)	(kipft)	(kipft)				
0.00	0.0	0.0	0.0	0.0	0.0				
0.17	-0.1	0.0	-1.7	-0.1	0.0				
0.17	-0.1	0.0	163.8	-0.1	0.0				
3.29	337.8	196.7	132.4	461.8	0.0				
6.67	622.9	362.8	98.3	851.5	0.0				
9.92	817.6	476.2	65.5	1117.6	0.0				
13.17	934.4	544.2	32.8	1277.3	0.0				
16.42	973.3	566.9	0.0	1330.6	0.0				
19.80	931.2	542.4	-34.1	1273.0	0.0				
23.05	811.3	472.5	-66.8	1109.0	0.0				
26.29	613.5	357.3	-99.6	838.6	0.0				
29.67	325.2	189.4	-133.7	444.5	0.0				
32.66	-0.1	0.0	-163.8	-0.1	0.0				
32.66	-0.1	0.0	1.7	-0.1	0.0				
32.83	0.0	0.0	0.0	0.0	0.0				

SUPPORT REACTIONS (kip)

	Unfactored	Support	Reaction	ns
Load Case	Left	I	Right	
Beam Weight	10.	2	10.2	
SDL BT	40.	7	40.7	
Topping Wgt	: 0.	0	0.0	
SDL AT	19.	6	19.6	
LL Sustair	ı 0.	0	0.0	
Live Load	50.	6	50.6	
Roof Load	0.	0	0.0	
Fluid Wgt	0.	0	0.0	
VWind or EQ	Q 0.	0	0.0	
Strain Load	a 0.	0	0.0	
Load Combo.	Left	· · · · ·]	Right	
Sust. Total	70	5	70.5	
Total	121	.1	121.1	
Factor Max.	165	5	165.5	

CONCRETE STRESS RESULTS (+ve = compression, -ve = tension)

Location	x ft	Stress psi	Limit psi	Overstres Notice	55			
STRESSES AT TRANS	FER -			<u> </u>	_			
Critical Compress:								
Top of Beam		-1	2800	0	Ŷ			
Bottom of Beam	1.99	3246	2800	16	Ŷ			
						Longitudinal 1	ensile Rebar	Needed (in^2)
Critical Tension						Required	Provided	Additional
Top of Beam	1.99	-997	-474	110	\$	1.6	3.2	0.0
Bottom of Beam	0.00	4	-474	0	olo			
STRESSES IN SERVI	CE -							
Critical Compress	ion							
Top of Beam	16.42	5013	3600	39	Ŷ			
Bottom of Beam	1.99	1791	3600	0	%			
Critical Tension								
ngineer: EMF						Company:		Engineering, In
ile: 3rd Floor 3	6IT20.co	n		3			Tue Oct	07 15:25:51 20

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 3rd Floor 36IT20

Top of Beam Bottom of Beam	0.17 16.42	-85 -1889	-930 * -930 *		<pre>% Class U member - not cracked % Class C member - check cracking and cover</pre>	
STRESSES IN SERVI Critical Compress		ED LOADS ONLY	()			
Top of Beam	16.42	2480	2700	0 %	8	
Bottom of Beam	1.99	2236	2700	08	ajo	
* Bilinear deflec	tion calcula	ation used.				
Modulus of Ruptur Transfer Strength Transfer Strength	Required,		-581 psi 4.6 ksi 4.0 ksi			

DISTRIBUTION OF FLEXURAL STEEL & CRACKING

left end of beam bid id ion ace (after decompression) e extreme rebar e edge of concrete in tension
bid id ace (after decompression) e extreme rebar
id ion ace (after decompression) e extreme rebar
ion ace (after decompression) e extreme rebar
ace (after decompression) e extreme rebar
ace (after decompression) e extreme rebar
e extreme rebar
edge of concrete in tension
, cage of constelle in cension
osest to tension face
ach bar/strand
t to tension face
steel closest to tension face
3
n Handbook)
nforced
ncrete
Z
13 145000
.1

Control of cracking is accomplished by proper steel detailing as specified in the design code. ** Note: Gergely & Lutz equation: w = kl x fs x h2 / h1 x CubicRoot(dc * A) Suri & Dilger equation: w = kl x fs x dc x Sqrt(At / Ast)

NET DEFLECTION ESTIMATE AT ALL STAGES

(-ve = deflection down, +ve = camber up) Deflection growth estimated by use of PCI suggested multipliers - see multiplier report Design Code Used: ACI318-05

			t Deflecti					Deflection		
Location x	Net @ * Transfer	Net @ Erection	Net @ Complete	Net DL @ Final	Net Total @ Final	DL growth + LL **	LL alone	Span/Def: DL growth	LECTION	
ft	in	in	in	in	in	in	in	+ LL **	alone	
0.00	0.000	-0.009	-0.004	-0.004	0.015	0.019	0.019	213	213	
0.17	0.019	0.000	0.000	0.000	0.000	0.000	0.000	0	0	
3.29	0.339	0.250	0.158	0.029	-0.317	-0.475	-0.346	820	1127	
6.67	0.606	0.433	0.253	-0.014	-0.707	-0.960	-0.693	406	562	
ngineer:	EMF					Comp	any: Civ	ilsmith Eng	ineering,	Inc
	Floor 36I	T20.con			4		-	Tue Oct 07	15:25:51	. 200

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 3rd Floor 36IT20 9.92 0.785 0.540 0.293 -0.082 -1.06 -1.35 -0.978 13.17 0.891 0.598 0.309 -0.138 -1.32 -1.63 -1.18 16.42 0.926 0.616 0.313 -0.160 -1.42 -1.73 -1.26

9.92	0.785	0.540	0.293	-0.082	-1.06	-1.35	-0.978	287	398	
13.17	0.891	0.598	0.309	-0.138	-1.32	-1.63	-1.18	239	329	
16.42	0.926	0.616	0.313	-0.160	-1.42	-1.73	-1.26	225	310	
19.80	0.888	0.596	0.309	-0.137	-1.31	-1.62	-1.18	240	331	
23.05	0.779	0.537	0.292	-0.080	-1.05	-1.34	-0.968	290	402	
26.29	0.597	0.427	0.250	-0.012	-0.692	-0.942	-0.681	413	572	
29.67	0.327	0.241	0.153	0.030	-0.302	-0.456	-0.332	855	1175	
32.66	0.019	0.000	0.000	0.000	0.000	0.000	0.000	0	0	
32.83	0.000	-0.009	-0.004	-0.004	0.015	0.019	0.019	213	213	

Span/Deflection Limits: DL growth + LL * = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs

 \star on temporary supports at transfer $\star\star$ after completion, including placement of all DL

FLEXURAL DESIGN CHECK

Design Code Used: ACI318-05 Beta Used: for precast beam = 0.750 The maximum value for fps is limited to 0.98 fpu.

x ft	Factored Moment Mu kipft	Design Strength ØMn kipft	Minimum Strength 1.2Mcr kipft	Depth in Compression c in	Net Tensile Strain	Flexure Class	Ø	Notes & Warnings
0.00	0.0	121.2	127.4	2.41	0.0194	Tension	0.75	
0.17	-0.1	-354.8	-95.7	2.77	0.0163	Tension	0.75	
3.29	461.8	914.0	809.3	8.08	0.0037	Tension	0.83	
6.67	851.5	1155.0	834.1	10.05	0.0024	Tension	0.90	
9.92	1117.6	1163.5	851.0	10.17	0.0023	Tension	0.90	
13.17	1277.3	1168.7	861.1	10.25	0.0023	Tension	0.90	1
16.42	1330.6	1170.7	864.4	10.25	0.0023	Tension	0.90	1
19.80	1273.0	1168.5	860.8	10.25	0.0023	Tension	0.90	1
23.05	1109.0	1163.2	850.4	10.17	0.0023	Tension	0.90	
26.29	838.6	1154.5	833.3	10.05	0.0024	Tension	0.90	
29.67	444.5	898.5	808.2	7.92	0.0038	Tension	0.83	
32.66	-0.1	-354.8	-95.7	2.77	0.0163	Tension	0.75	
32.83	0.0	121.2	127.4	2.41	0.0194	Tension	0.75	
Points of	Maximum and	Minimum Factor	red Moment	<u>`</u>				
16.42	1330.6	1170.7	864.4	10.25	0.0023	Tension	0.90	1
0.17	-0.1	-354.8	-95.7	2.77	0.0163	Tension	0.75	
Points of	Critical Mom	ent Design						
16.42	1330.6	1170.7	864.4	10.25	0.0023	Tension	0.90	1
0.17	-0.1	-354.8	-95.7	2.77	0.0163	Tension	0.75	

Notes & Warnings

1 - Warning: clause 9.1.1, ØMn < Mu, design strength is not greater than factored moment

SHEAR AND TORSION DESIGN CHECK

Design Code Used: ACI318-05

x ft	Applied Shear Vu kip	Prestress Component Vp kip	Concrete Strength ØVc kip	Stirrup * Strength ØVs kip	Shear Strength ØVn kip	Applied Torsion Tu kipft	Threshold Torsion ØTcr/4 kipft	Warnings
	-			-29.5	-71.8	0.0	15.5	
0.00	0.0	0.0	-42.3 -86.5	-29.5	-112.9	0.0	17.5	
0.17	-1.7	0.0					17.5	2
0.17	155.4	0.0	86.5	26.4	112.9	0.0		2
3.29	132.4	0.0	156.1	26.9	183.1	0.0	31.7	
6.67	98.3	0.0	72.9	27.1	100.0	0.0	31.6	
9.92	65.5	0.0	45.8	27.1	72.9	0.0	31.5	
13.17	32.8	0.0	45.8	27.1	72.9	0.0	31.4	
16.42	0.0	0.0	45.8	27.1	72.9	0.0	31.4	
19.80	-34.1	0.0	-45.8	-27.1	-72.9	0.0	31.4	
23.05	-66.8	0.0	-45.8	-27.1	-72.9	0.0	31.5	
26.29	-99.6	0.0	-74.5	-27.1	-101.6	0.0	31.6	
ineer:	EME				Co	ompany: Civ	ilsmith Engi	neering.

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 3rd Floor 36IT20

29.67	-133.7				-189.9	0.0	31.7		
32.66	-155.4	0.0	-86.5	-26.4	-112.9	0.0	17.5	2	
32.66	1.7	0.0	86.5	26.4	112.9	0.0	17.5		
32.83	0.0	0.0	42.3	29.5	71.8	0.0	15.5		

Notes & Warnings 2 - Warning: The applied factored shear, Vu, is greater than the shear strength, ØVn. * Stirrup resistance based on stirrup area provided.

Transverse	e Steel (Sti: Required S	rrup) Design	for Shear Stirrup	Ctiverup	Spacing	Long Torgi	on Steel, Al	Notes &
	Total	Torsion*	Provided	Provided	Required	Total	Allowable	Warnings
x	(Av+2At)/s	At/s	Av+2At	s	s	Required	Reduction**	5
ft	in^2/ft	in^2/ft	in^2	in	in	in^2	in^2	
0.00	0.00	0.00	0.22	6.00	15.00	0.00	0.00	
0.17	0.00	0.00	0.22	6.00	15.00	0.00	0.00	
0.17	1.15	0.00	0.22	6.00	2.30	0.00	0.00	1
3.29	0.12	0.00	0.22	6.00	15.00	0.00	0.00	2
6.67	0.41	0.00	0.22	6.00	6.40	0.00	0.00	
9.92	0.32	0.00	0.22	6.00	8.26	0.00	0.00	
13.17	0.18	0.00	0.22	6.00	14.54	0.00	0.00	2
16.42	0.00	0.00	0.22	6.00	15.00	0.00	0.00	
19.80	0.18	0.00	0.22	6.00	14.54	0.00	0.00	2
23.05	0.34	0.00	0.22	6.00	7.74	0.00	0.00	
26.29	0.41	0.00	0.22	6.00	6.49	0.00	0.00	
29.67	0.12	0.00	0.22	6.00	15.00	0.00	0.00	2
32.66	1.15	0.00	0.22	6.00	2.30	0.00	0.00	1
32.66	0.00	0.00	0.22	6.00	15.00	0.00	0.00	
32.83	0.00	0.00	0.22	6.00	15.00	0.00	0.00	

Notes & Warnings

Notes & Warnings 1 - Warning: The shear stirrup spacing is too wide. 2 - Note: Amount of shear steel required represents minimum requirements. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** Allowable reduction in the additional longitudinal steel in the compression portion of the section.

6

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: Roof 36IT18 SUMMARY REPORT Design Code Used: ACI318-05 CONCRETE MATERIAL PROPERTIES Precast Beam lb/ft^3 Concrete Density Wt 150 Compressive Strength f'c = 6.5 ksi 4888 ksi Modulus of Elasticity EC == Strength at Transfer f'ci = 4.0 ksi Modulus of Elast. at Transfer Eci 3834 ksi Construction Schedule * 691 lb/yd^3 Cement Content = = 0.75 days = 40 days Air Content = 5.00 % Age at Transfer Age at Erection = 1.97 in Slump = 0.40 (ratio fine to total aggregate)
= 0.00 in 50 days Aggregate Mix Age at Topping Placement = 53 days Aggregate Size Age Topping is Composite = = Moist = 70 * for loss calculations only) Curing Method 70 % Humidity Basic Shrinkage Strain = 780E-6 BEAM LAYOUT Section Identification Topping Parameters Segment/Length Offset v †1 h2 То z Folder Section b1 +2 From No ft ft in in in in in in 1 -0.00 32.83 0.00 0.00 Inverted-Tee 36IT18 8" HC Total Beam Length = 32.83 ft, Left Support @ 0.33 ft, Right Support @ 32.50 ft, Span = 32.17 ft PRECAST SECTION PROPERTIES (NON-COMPOSITE) width St V/S bw height Sb Seg. А Ι yb No. in^2 in^4 in in^3 in^3 in in in in 550.5 14162 8.13 1435 5.10 24.00 36.00 1742 18.00 1 * These properties do not include the transformed area of any reinforcing or prestressing steel. See the Transformed Section Properties text report for properties that include the area of steel. LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups то * Offset Offset Reference ** Bar Size * * ID Qty Grade Area From in^2 ksi ft ft in 1 3 0.00 H 32.83 H 17.50 bottom of the beam 2.370 60 0 #8 2.13 bottom of the beam 0.880 0.00 H 32.83 H #6 2 2 60.0 3 2 0.620 0.00 H 32.83 H 11.00 bottom of the beam 60.0 #5 4 2 60.0 #5 0.620 0.00 H 32.83 H 14.00 bottom of the beam notes: * A 'C' or 'H' suffix indicates "epoxy coating" and "hooked end" respectively. ** Offsets are measured up from the bottom or down from the top Reinforcing Steel Development Lengths (in) Right End of Rebar Location Spacing Density Bar Size Left End of Rebar Tension Compression Tension Compression тD Factor Factor Factor Factor 1.00 0.00 1 1.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 2 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 3 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 4 note: Product of location and coating factors not taken greater than 1.70. PRESTRESSING STEEL TENDONS Prestressing Strand Details End Offset & Type * Tendon Jacking Force Offsets Company: Civilsmith Engineering, Inc. Engineer: EMF 1 Tue Oct 07 15:24:16 2008 File: Roof_36IT18.con

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: Roof 36IT18

ID Qty	Material	Section	x ft	y in	Left ft	Right ft	Area in^2	Pj kip	%fpu
1 11 3	fpu=270 ksi	SWS#1/2"SP	0.00	2.00	0.00 B	0.00 B	1.837	347.2	0.70
E	s= 28000.0 ks	i	32.83	2.00					
2 4	fpu=270 ksi	SWS#1/2"SP	0.00	4.00	0.00 B	0.00 B	0.668	126.3	0.70
E	s= 28000.0 ks	i	32.83	4.00					

notes: * Strand End Types: B - Fully Bonded, D - Debonded, C - Cut, A - Anchored (fully developed) Calculated Losses: Initial = 6.2 %, Final = 9.3 % Maximum Total Prestress Forces: Pj(jacking) =

473.4 kip, Pi(transfer) = 444.1 kip, 429.4 kip @ x = 16.42 ft Pe(effective) =

Prestressing Strand Transfer and Development Lengths

ID	Diameter in	End	Debond Length ft	fse psi	fps psi	Transfer in	Development in
1	0.50	LEFT RIGHT	0.00	156030 156030	261304 261304	25.97 25.97	78.60 78.60
2 2	0.50	LEFT RIGHT	0.00	157071 157071	258363 258363	26.15 26.15	76.78 76.78

BEAM AND TOPPING SELF-WEIGHT

Seg	ment/Lengt	th	Linear	Weight
	From	То	Beam	Topping
No.	ft	ft	kip/ft	kip/ft
<u> </u>				
1	0.00	32.83	0.57	

EXTERNALLY APPLIED LOADS

				Load Intens	sity (*)	Offset (ft)		
Load Case		Load Label	Load Type	Left	Right	Left	Right	
SDL BT SDL BT Roof Load	D	8 " HC Slab 12 psf misc 30 PSF SL	Line Load Line Load Line Load	2.12 0.42 1.05	2.12 0.42 1.05	0.00 0.00 0.00	32.83 32.83 32.83	

* point loads = kip, line loads = kip/ft, point moment/torsion = kipft, line torsion = kipft/ft

Load Combinations Factored Combination 1 = 1.40D + 1.40FFactored Combination 2 = 1.20D + 1.60L + 0.50SRLr + 1.20F + 1.20TFactored Combination 3 = $1.20D + 0.50L^* + 1.60SRLr$ Factored Combination 4 = 1.20D + 1.60SRLr + 0.80WEFactored Combination 5 = 1.20D + 0.50L* + 0.50SRLr + 1.60WEFactored Combination 6 = 0.90D + 1.60WEthe Load factor reduced from 1.0 to 0.5 for low live loading (garage, public assembly, < 100 lb/ft2) (The use of T is not yet implemented)

```
SHEAR STIRRUPS
                 Stirrup Stirrup
                                    Number of Legs
                                                       Total Stirrup Area
                                                                               Stirrup Spacing
                                                                              Stirrup Interface
                                                       Stirrup Interface
  From
           то
                  Grade
                          Size
                                  Stirrup Interface
                                                       in^2
                                                                    in^2
                                                                                in
                                                                                         in
                                  in Beam
                                             Ties
           ft
                    ksi
  ft
                                                                                         0.00
                               #3
                                         2 -
                                                 0
                                                          0.22
                                                                       0.00
                                                                                 6.00
                    60.0
   0.00
           32.83
```

Seg. Torsion Parameters Ph

TORSION PARAMETERS

1

Aoh in^2 No. in 397.50

96.00

Ach is the area enclosed by the centerline of the outermost closed transverse torsional reinforcement.

Company: Civilsmith Engineering, Inc. Engineer: EMF Tue Oct 07 15:24:16 2008 2 File: Roof_36IT18.con

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: Roof 36IT18

Ph is the perimeter of the area defined as Aoh.

ANALYSIS RESULTS SUMMARY

SUPPORT REACTIONS (kip)

x (ft)	Moment		Shear	Factored Effect Moment	Torsion (kipft)
	Total	Sustained	(kip)	(kipft)	(KIDIC)
0.00	0.0	0.0	0.0	0.0	0.0
0.33	-0.2	-0.2	-1.8	-0.3	0.0
0.33	-0.2	-0.2	87.1	-0.3	0.0
3.29	179.8	134.5	71.1	233.9	0.0
6.64	339.4	253.8	53.0	441.5	0.0
9.85	448.8	335.7	35.6	583.9	0.0
13.20	517.0	386.7	17.4	672.5	0.0
16.42	538.5	402.8	0.0	700.5	0.0
19.76	515.2	385.3	-18.1	670.2	0.0
23.11	445.3	333.0	-36.3	579.2	0.0
26.32	334.1	249.9	-53.7	434.6	0.0
29.67	172.7	129.2	-71.8	224.7	0.0
32.50	-0.2	-0.2	-87.1	-0.3	0.0
32.50	-0.2	-0.2	1.8	-0.3	0.0
32.83	0.0	0.0	0.0	0.0	0.0

Infactored Supp	ort Reactions
Left	Right
9.4	9.4
	41.7
	0.0
0.0	0.0
0.0	0.0
0.0	0.0
17.2	17.2
0.0	0.0
0.0	0.0
0.0	0.0
Left	Right
51.1	51.1
68.4	68.4
89.0	89.0
	Left 9.4 41.7 0.0 0.0 0.0 17.2 0.0 0.0 0.0 0.0 Left 51.1 68.4

CONCRETE STRESS RESULTS (+ve = compression, -ve = tension)

Location	x ft	Stress psi	Limit psi	Overstres Notice	35	
STRESSES AT TRANS	FER					
Critical Compress	ion					
Top of Beam	0.00	0	2800	0	응	
Bottom of Beam	30.57	1949	2800	0	Ŷ	
Critical Tension						Longitudinal Tensile Rebar Needed (in ²) Required Provided Additional
Top of Beam	30.57	-701	-474	48	0	
Bottom of Beam	0.00	2	-474		0/0	
STRESSES IN SERVI						
Critical Compress						
Top of Beam		3353	3900	0	Ŷ	
Bottom of Beam		1081	3900	0	Ŷ	
Critical Tension						
Top of Beam	32.50	-121	-967	* 0	9	Class U member - not cracked
	16.42	-1480	-967	* 53	90	Class C member - check cracking and cover
STRESSES IN SERVI	CE (SUSTA	TNED LOADS ON	ILY)			
Critical Compress						
						Company: Civilsmith Engineering, In
ngineer: EMF ile: Roof 36IT18				3		Tue Oct 07 15:24:16 2

0 %

Summary Report

Concise Beam (TM), Version 4.46c, (c).2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: Roof 36IT18 Top of Beam 2294 1268 2925 0 % 16.42

Bottom of	Beam	30.70	12	68	2925	5
* Bilinear	deflect	ion calcula	ation	used.		
Modulus of Transfer S Transfer S	trength	Required,		=	-605 2.8 4.0	psi ksi ksi

DISTRIBUTION OF FLEXURAL STEEL & CRACKING

	Bottom of Beam	Top of Beam	
Maximum	Crack Width	ı Estimate	
Cracked?	Yes	No	
w =	0.010	0.000	in - Estimated maximum crack width *
x =	16.42	0.00	ft - Location of maximum crack width from left end of beam
C =	8.12	0.00	in - Concrete depth in compression
Ms =	538.5	0.0	kipft - External service moment (DL + LL)
Pdc =	-377.2	0.0	kip - Decompression force at cracked centroid
Mint=	154.7	0.0	kipft - Internal moment about cracked centroid
Steel Ty	pe mixed	rebar	- Type of steel in tension
S	uri&Dilger	-	- Equation used **
k1 =	2.1	0.0	- $(x \ 10^{-5})$ Coefficient used for equation
fs =	22.7	0.0	psi - Stress in steel nearest to tension face (after decompression)
h1 =	-	0.00	in - Distance from the neutral axis to the extreme rebar
h2 =	-	0.00	in - Distance from the neutral axis to the edge of concrete in tension
dc =	2.00	0.00	in - Concrete cover to center of steel closest to tension face
A =	-	0.0	in ² - Area of concrete in tension around each bar/strand
At =	355.6	-	in ² - Area of concrete in tension
Ast =	3.4		in ² - Area of steel in tension
Maximum	Flexural St	teel Spacing	
CC =	1.75	0.00	in - Clear concrete cover to steel closest to tension face
S =	17.63	0.00	in - Maximum centre-to-centre spacing of steel closest to tension face
-			
fc =	-4082	-177	
limit=	-3900	-3900	psi - Allowable concrete compressive stress
Recommen	nded Crack N		d Equivalent z (lb/in) Values (from PCI Design Handbook)

	Critical Exposure		Prestress Concret		Concrete	
	w	z	w	z	W	z
Exterior Exposure	0.007	80000 105000	0.008	90000 115000	0.013	145000 175000

* Note: actual crack widths can vary by as much as 50% from this predicted value. Control of cracking is accomplished by proper steel detailing as specified in the design code. ** Note: Gergely & Lutz equation: w = kl x fs x h2 / h1 x CubicRoot(dc * A) Suri & Dilger equation: w = kl x fs x dc x Sqrt(At / Ast)

NET DEFLECTION ESTIMATE AT ALL STAGES

(-ve = deflection down, +ve = camber up)Deflection growth estimated by use of PCI suggested multipliers - see multiplier report Design Code Used: ACI318-05

Net Deflection						Change in Deflection				
Location	Net @ *	Net @	Net @	Net DL	Net Total	DL growth	LL	Span/Def:	lection	
x	Transfer	Erection	Complete	@ Final	@ Final	+ LL **	alone	DL growth	LL -	
ft	in	in	in	in	in	in	in	+ LL **	alone	
0.00	0.000	0.003	0.003	0.003	0.031	0.027	0.027	291	291	
0.33	0.023	0.000	0.000	0.000	0.000	0.000	0.000	0	0	
3.29	0.214	0.014	0.014	-0.091	-0.333	-0.347	-0.242	1111	1594	
6.64	0.378	-0.012	-0.012	-0.231	-0.736	-0.723	-0.504	533	765	
9.85	0.485	-0.053	-0.053	-0.362	-1.10	-1.04	-0.735	369	525	
13.20	0.550	-0.088	-0.088	-0.458	-1.37	-1.29	-0.916	300	421	
16.42	0.571	-0.101	-0.101	-0.490	-1.47	-1.37	-0.981	281	393	
19.76	0.549	-0.087	-0.087	-0.455	-1.37	-1.28	-0.911	301	423	
23.11	0.482	-0.051	-0.051	-0.357	-1.08	-1.03	-0.726	374	531	
	Engineer: EMF Company: Civilsmith Engineering, Inc. File: Roof 36IT18.con 4 Tue Oct 07 15:24:16 2008									

Summary Report

Concise Beam (TM), Version 4.46c, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: Roof 36IT18

26.32	0.372	-0.011	-0.011	-0.226	-0.720	-0.710	-0.495	543	780	
29.67	0.207	0.014	0.014	-0.086	-0.318	-0.332	-0.232	1162	1666	
32.50	0.023	0.000	0.000	0.000	0.000	0.000	0.000	0	0	
32.83	0.000	0.003	0.003	0.003	0.031	0.027	0.027	291	291	

Span/Deflection Limits: DL growth + LL * = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs

* on temporary supports at transfer ** after completion, including placement of all DL

FLEXURAL DESIGN CHECK

Design Code Used: ACI318-05 Beta Used: for precast beam = 0.725 The maximum value for fps is limited to 0.98 fpu.

x ft	Factored Moment Mu kipft	Design Strength ØMn kipft	Minimum Strength 1.2Mcr kipft	Depth in Compression c in	Net Tensile Strain	Flexure Class	Ø	Notes & Warnings
0.00	0.0	75.4	107.1	0.72	0.0638	Tension	0.75	and the second
0.33	-0.3	-213.7	-75.3	1.98	0.0235	Tension	0.76	
3.29	233.9	515.6	456.7	4.18	0.0085	Tension	0.83	
6.64	441.5	727.4	469.5	5.80	0.0053	Tension	0.90	
9.85	583.9	728.0	478.3	5.80	0.0053	Tension	0.90	
13.20	672.5	728.3	483.7	5.80	0.0053	Tension	0.90	
16.42	700.5	728.5	485.4	5.80	0.0053	Tension	0.90	
19.76	670.2	728.3	483.6	5.80	0.0053	Tension	0.90	
23.11	579.2	728.0	478.0	5.80	0.0053	Tension	0.90	
26.32	434.6	725.0	469.1	5.76	0.0053	Tension	0.90	
29.67	224.7	507.7	456.2	4.15	0.0086	Tension	0.82	
32.50	-0.3	-213.7	-75.3	1.98	0.0235	Tension	0.76	
32.83	0.0	75.4	107.1	0.72	0.0638	Tension	0.75	
Points of	Maximum and	Minimum Factor	red Moment					
16.42	700.5	728.5	485.4	5.80		Tension	0.90	
32.50	-0.3	-213.7	-75.3	1.98	0.0235	Tension	0.76	
Points of	Critical Mon	nent Design						
16.42	700.5	728.5	485.4	5.80		Tension	0.90	
32.50	-0.3	-213.7	-75.3	1.98	0.0235	Tension	0.76	

SHEAR AND TORSION DESIGN CHECK

Design Code Used: ACI318-05

Shear and x ft	Torsion Des Applied Shear Vu kip	sign Forces Prestress Component Vp kip	Concrete Strength ØVc kip	Stirrup * Strength ØVs kip	Shear Strength ØVn kip	Applied Torsion Tu kipft	Threshold Torsion ØTcr/4 kipft	Notes & Warnings
0.00	0.0	0.0	-38.9	-26.0	-65.0	0.0	14.2	
0.33	-1.8	0.0	-88.8	-26.0	-114.8	0.0	16.0	
0.33	83.1	0.0	88.8	26.0	114.8	0.0	16.0	
3.29	71.1	0.0	97.0	25.6	122.6	0.0	23.7	
6.64	53.0	0.0	47.4	25.6	73.0	0.0	23.5	
9.85	35.6	0.0	45.0	25.6	70.6	0.0	23.4	
13.20	17.4	0.0	45.0	25.6	70.6	0.0	23.3	
16.42	0.0	0.0	45.0	25.6	70.6	0,0	23.3	
19.76	-18.1	0.0	-45.0	-25.6	-70.6	0.0	23.3	
23.11	-36.3	0.0	-45.0	-25.6	-70.6	0.0	23.4	
26.32	-53.7	0.0	-48.3	-25.6	-73.9	0.0	23.5	
29.67	-71.8	0.0	-101.1	-25.6	-126.7	0.0	23.7	
32.50	-83.1	0.0	-88.8	-26.0	-114.8	0.0	16.0	
32.50	1.8	0.0	88.8	26.0	114.8	0.0	16.0	
32.83	0.0	0.0	38.9	26.0	65.0	0.0	14.2	

* Stirrup resistance based on stirrup area provided.

Engineer: EMF File: Roof_36IT18.con Company: Civilsmith Engineering, Inc. Tue Oct 07 15:24:16 2008

5

Crocker West Building State College, Pa January 17, 2009

TECH REPORT I

End of Report